gasuss_a,gauss_b



Yes and no. The set {gauss_a, gauss_b} is a fundamental solution set FSS to
the Gauss differential equation. It should be OK to always set
gauss_a(p,q,s,x) = 2F1([p,q],[s],x). Loading hypergeometric.lisp, Maxima
should be able to numerically evaluate  2F1([p,q],[s],x). For guass_b,
you'll need to consult A & S. For the log singularity, Maxima cannot
numerically evaluate the function--other cases, no problem (we'll it's
some work...)

Barton



-----maxima-bounces at math.utexas.edu wrote: -----

>To: "Maxima List" <maxima at math.utexas.edu>
>From: "Richard Hennessy" <rich.hennessy at verizon.net>
>Sent by: maxima-bounces at math.utexas.edu
>Date: 01/03/2010 01:43PM
>Subject: gasuss_a,gauss_b
>
>
>I tried.
>
>(%i9) display2d:false;
>
>(out9) false
>(%i10) load(odelin);
>
>(out10)
>"C:/Maxima-5.20.1/share/maxima/5.20.1/share/contrib/diffequations/odelin.l
>isp"
>(%i11) odelin(-'diff(f,x,2)+a*f/(1+x^2),f,x);
>
>(out11)
>{gauss_a((sqrt(4*a+1)+3)/2,-(sqrt(4*a+1)-3)/2,2,-(%i*x-1)/2)*(x^2+1),gauss
>_b((sqrt(4*a+1)+3)/2,-(sqrt(4*a+1)-3)/2,2,-(%i *x-1)/2)*(x^2+1)}
>
>Is there any way to calculate/evaluate the gauss_a or gauss_b functions in
>Maxima?
>
>Rich
>
>_______________________________________________
>Maxima mailing list
>Maxima at math.utexas.edu
>http://www.math.utexas.edu/mailman/listinfo/maxima