The polynomial which can't be solved is
x^6-24576*x^5+402653184*x^4-4947802415966*x^3+40532397764222976*x^2+9157742690304*x+2069067169.
I tried bfallroots with fpprec=32 and is still didn't find any roots.
With fpprec 64 it only finds 2 roots. With fpprec 128 it finds all
roots.
Andrej
On Tue, Jan 12, 2010 at 12:26 AM, Barton Willis <willisb at unk.edu> wrote:
> It seems like an good improvement. How about using bfallroots?
>
> Barton
>
> -----maxima-bounces at math.utexas.edu wrote: -----
>
>>To:?Maxima?-?list?<maxima at math.utexas.edu>
>>From:?Andrej?Vodopivec?<andrej.vodopivec at gmail.com>
>>Sent?by:?maxima-bounces at math.utexas.edu
>>Date:?01/11/2010?11:49AM
>>Subject:?[Maxima]?allroots?patch
>>
>>Here?is?a?system?of?polynomials?(posted?on?sage-support?forum)?which
>>maxima?can't?solve:
>>
>>(%i1)?[x^3?+?3*x^2*y?+?3*x*y^2?=?45487,?y^3?=
>>549755813888];
>>(%o1)?[3*x*y^2+3*x^2*y+x^3=45487,y^3=549755813888]
>>(%i2)?solve(%);
>>allroots:?no?roots?found.
>>?--?an?error.?To?debug?this?try:?debugmode(true);
>>
>>The?problem?is?in?allroots?called?from?alysys.?I?patched?it?so?that?I
>>can?force?it?to?use?the?algorithm?for?complex?polynomials.?With?this
>>the?system?can?be?solved:
>>
>>(%i3)?solve(%o1),?allroots_complex=true;
>>(%o3)
>>[[y=7094.480107802121*%i-4095.999999999999,x=1.9566663332522818*10^-4*%i-1
>>.1296818342174827*10^-4],[y=-7094.480107802121*%i-4096.000000000002,x=-1.9
>>566663332522818*10^-4*%i-1.1296818342174833*10^-4],[y=7094.480107802121*%i
>>-4095.999999999999,x=-14188.96041127087*%i-1.1296818443896424*10^-4],[y=70
>>94.480107802121*%i-4095.999999999999,x=12288.00022593637-7094.480107802124
>>*%i],[y=-7094.480107802121*%i-4096.000000000002,x=14188.96041127087*%i-1.1
>>296818335232472*10^-4],[y=-7094.480107802121*%i-4096.000000000002,x=7094.4
>>80107802125*%i+12288.00022593637],[y=8192.0,x=2.2593636684349655*10^-4-2.7
>>10505431213761*10^-20*%i],[y=8192.0,x=7094.480303463693*%i-12288.000112965
>>39],[y=8192.0,x=-7094.480303463693*%i-12288.00011297098]]
>>
>>Maybe?something?like?this?should?be?available?in?Maxima?
>>
>>Andrej
>>
>>_______________________________________________
>>Maxima?mailing?list
>>Maxima at math.utexas.edu
>>http://www.math.utexas.edu/mailman/listinfo/maxima
>
>