Multiples of %pi
- Subject: Multiples of %pi
- From: Barton Willis
- Date: Sat, 23 Jan 2010 13:11:47 -0600
Two workarounds:
(%i1) e : sin(234*%pi/11);
(%o1) sin((234*%pi)/11)
(%i2) rectform(exponentialize(e));
(%o2) -sin((8*%pi)/11)
(%i3) load(spangl)$
(%i4) sin(234*%pi/11);
(%o4) -cos((5*%pi)/22)
Is spangl reliable? I don't think there are regression tests for spangl.
Barton
-----maxima-bounces at math.utexas.edu wrote: -----
>To:?maxima?mailing?list?<maxima at math.utexas.edu>
>From:?Stavros?Macrakis?<macrakis at alum.mit.edu>
>Sent?by:?maxima-bounces at math.utexas.edu
>Date:?01/22/2010?02:45PM
>Subject:?[Maxima]?Multiples?of?%pi
>
>Jose?brings?up?a?good?point?below.
>
>Why?aren't?we?simplifying?e.g.?sin(234*%pi/11)?=>?-sin(3*%pi/11)??
>
>????????????-s
>
>----------?Forwarded?message?----------
>From:?Jose?<jose.bray at free.fr>
>
>Date:?2010/1/17
>Subject:?[Maxima-lang-fr]?simplification?trigonometrique
>To:?maxima-lang-fr at lists.sourceforge.net
>
>
>Bonjour,?la?commande?:
>
>
>
>bfloat(cos(400.0*%pi/9.0)-cos(4.0*%pi/9.0))
>
>
>
>(notez?que?400?pi?/?9?est??gal???4?pi?/?9?modulo?2?pi)
>
>
>
>ne?me?renvoie?pas?0?;?pas?plus?qu'une??valuation?symbolique?de?cos?(400
>
>pi?/?9)?-?cos?(4?pi?/9?)?,?ou?du?moins?dans?ce?cas,?je?n'ai?pas?trouv?
>
>la?commande?le?permettant...
>
>
>
>Y?a-t-il?une?explication????a??
>
>
>
>--------------------------------------------------------------------------
>----
>
>Throughout?its?18-year?history,?RSA?Conference?consistently?attracts?the
>
>world's?best?and?brightest?in?the?field,?creating?opportunities?for
>Conference
>
>attendees?to?learn?about?information?security's?most?important?issues
>through
>
>interactions?with?peers,?luminaries?and?emerging?and?established
>companies.
>
>http://p.sf.net/sfu/rsaconf-dev2dev
>
>_______________________________________________
>
>Maxima-lang-fr?mailing?list
>
>Maxima-lang-fr at lists.sourceforge.net
>
>https://lists.sourceforge.net/lists/listinfo/maxima-lang-fr
>
>
>
>_______________________________________________
>Maxima?mailing?list
>Maxima at math.utexas.edu
>http://www.math.utexas.edu/mailman/listinfo/maxima