Rothstein-Trager algorithm.



Here is a very rudimentary implementation of the Rothstein-Trager
algorithm.  Seems to work for the few tests that I've run. 

f:(x^4-3*x^2+6)/(x^6-5*x^4+5*x^2+4)$
int_rational_function(f,x);
-> lsum(t*log(x^3+t*x^2-3*x-2*t)/2,t,rootsof(t^2+1))

One refinement that needs to be done is to try to solve for the roots
and substitute them in if possible, instead of leaving the result as a
sum over the roots.

We could also implement the Lazard-Rioboo-Trager algorithm, but maxima
doesn't seem to provide the subresultant prs sequence.  That would have
to be implemented.

Ray

/*
 * Simple implementation of Rothstein-Trager algorithm for integrating
 * rational functions.
 *
 * $Id: hermite_reduce.mac,v 1.4 2010/05/03 13:28:46 toy Exp $
 */

/* Extended Euclidean algorithm, diophantine version
 *
 * Find s and t such that s*a + t*b = c and either s = 0 or deg(s) < deg(b)
 *
 * var is the variable of the polynomials.
 */
extended_euclidean(a, b, c, var) :=
  block([s, t, g, q, r],
    [s, t, g] : gcdex(a, b, var),
    [q, r] : divide(c, g),
    s : q*s,
    t : q*t,
    if is(s # 0) and is(hipow(s, var) > hipow(b, var)) then
      ([q, r] : divide(s, b), s : r, t : t + q*a),
    [s, t]);

/* Hermite Reduction, Mack's linear version
 *
 * Find g and h such that A/D = diff(g,x) + h and return g and h.
 * h has a square-free denominator.
 */
hermite_reduce(a, d, var) :=
  block([g : 0, d_minus: gcd(d, diff(d, var)), d_star, deg],
    d_star : quotient(d, d_minus),
    /*
    print("d- = ", d_minus),
    print("d* = ", d_star),
    */
    for i : 1 while hipow(d_minus, var) > 0 do
      block([d_minus2 : gcd(d_minus, diff(d_minus, var)), d_minus_s, b, c],
        d_minus_s : quotient(d_minus, d_minus2),
    /*
        print("d-2 = ", d_minus2),
        print("d-* = ", d_minus_s),
    */
        [b,c] : extended_euclidean(quotient(-d_star * diff(d_minus,var),
d_minus), d_minus_s, a, var),
        /*print("[b, c] = ", [b, c]),*/
        a : c - quotient(diff(b, var) * d_star, d_minus_s),
        /*print("a = ", a),*/
        g : g + b/d_minus,
        /*print("g = ", g),*/
        d_minus : d_minus2),
    [g, a/d_star]);

/* Make p a monic polynomial.
 *
 * Let p(x) = a[0]*x^n + a[1]*x^(n-1) ...
 *
 * Use the substitution x = y/a[0]^(1/n) to get
 *
 * p(y) = y^n + a[1]/a[0]^((n-1)/n)*y^(n-1) ...
 *
 * Return the new polynomial and a[0]^(1/n)
 */
monic(p, var) :=
  block([e : hipow(p, var), c, temp],
    c : coeff(p, var, e),
    [subst([var = var/(c^(1/e))], p), c^(1/e)]);

/* Algebraic GCD */
algebraic_gcd(a,b) :=
  block([algebraic:true, gcd : subres],
    gcd(a,b));

/* Rothstein-Trager algorithm
 *
 * The numerator is a, the denominator is d, and the variable of
 * integration is var.
 */
int_rational_log_part(a, d, var) :=
  block([resultant : subres, t, r, s : 0],
    r : resultant(d, a - t*diff(d,var), var),
    r : sqfr(r),
    /* Can this be done better?  Say we have -c*R1(x)*R2(x)....  We
     * really just want the term product terms, without the leading
     * coefficient.  Just look for a unary minus and negate if it is.
     */
    if op(r) = "-" and length(args(r)) = 1 then
      r : -r,
    for i : 1 thru length(r) do
      block([f : part(r, i)],
        /* Skip any expressions that don't involve t */
        if not freeof(t, f) then
      block([g, p, e],
        /* Look for a expression like (t^2-16)^3.  Handle (t^2-16)
carefully. */
        if op(f) = "^" then
          [p, e] : args(f)
            else
              [p, e] : [f, 1],
        [rr, c] : monic(p, t),
        tellrat(rr),
        g : algebraic_gcd(d, a - t*expand(diff(d, var)/c)),
        untellrat(t),
        g : log(g),
            s : s + apply('lsum, [t*g/c, t, rootsof(rr)]))),
      s);


/* Integrate a rational function f */
int_rational_function(f, var) :=
  block([g,h,q,r],
    [g, h] : hermite_reduce(num(f), denom(f), var),
    [q, r] : divide(num(h), denom(h)),
    if r = 0 then
      g + integrate(q, var)
    else
      g + integrate(q, var) + int_rational_log_part2(r, denom(h), var));