Q in solve Chinese Remainder Theroem or inequality equation




Dear All
  I have some question in using maxima. that as following:

1.Is there a function or menthod  to solve Chinese Remainder Theorem or 
solve inequality equation in maxima

for example
eq1:x=3*q1+2;eq2:x=5*q2+4;eq3:x=7*q3+5; solve([eq1,eq2,eq3],x);
(%o9) x=3*q1+2
(%o10) x=5*q2+4
(%o11) x=7*q3+5
(%o12) []

I don't how to solve it in maxima.
another, I use the formula of Chinese Remainder Theorem 
for this special case

CRT357(r1,r2,r3):=(
print("x/3,r=",r1),
print("x/5,r=",r2),
print("x/7,r=",r3),
tmp:70*r1+21*r2+15*r3,
print("x=70*",r1,"+21*",r2,"+15*",r3,"=",tmp,"=",mod(tmp,105),"(mod 105)")
);

(%o3) CRT357(r1,r2,r3):=(print(x/3,r=,r1),print(x/5,r=,r2),print(x/7,r=,r3),tmp:
70*r1+21*r2+15*r3,
print(x=70*,r1,+21*,r2,+15*,r3,=,tmp,=,mod(tmp,105),(mod 105)))
x/3,r=2
x/5,r=4
x/7,r=5
x=70*2+21*4+15*5=299=89(mod 105)
(%o4) (mod 105)


1'. how to show the math symbol of "divide" in maxima  

2. how to solve complex number in maxima?
for example
z1=1+2i,z2=2+3i
how to solve
z1*z2
z1/z2
abs(z1)
plot |z1-2|=1

z1:1+2*%i;
z2:2+3*%i;
z1*z2;
z1/z2;
abs(z1);

(%o4) (2*%i+1)*(3*%i+2)
(%o5) (2*%i+1)/(3*%i+2)
Universal error handler called recursively (:ERROR NIL
CONDITIONS::CLCS-UNIVERSAL-ERROR-HANDLER
"" "Couldn't protect")
Universal error handler called recursively (:ERROR NIL
CONDITIONS::CLCS-UNIVERSAL-ERROR-HANDLER"" "Couldn't protect")
Maxima encountered a Lisp error:
 Error in CONDITIONS::CLCS-UNIVERSAL-ERROR-HANDLER [or a callee]: Caught fatal error [memory may be damaged]
Automatically continuing.
To reenable the Lisp debugger set *debugger-hook* to nil.

How to let answer of (%o4),(%o5) is a simply answer, 
and how to solve the |z1|, plot |z1-2|=1? 


Thanks so much.
 Yu Hsiung Huang


 		 	   		  
_________________________________________________________________
Hotmail ??????????????????
https://signup.live.com/signup.aspx?id=60969