Fwd: Trigonometric equations



Missing file attached and difficulty to post !

 

eqtrig.jpg

 

jean pellegri 

 

 

De : macrakis at gmail.com [mailto:macrakis at gmail.com] De la part de Stavros
Macrakis
Envoy? : jeudi 2 septembre 2010 19:50
? : maxima mailing list
Cc : Jean Pellegri
Objet : Re: [Maxima] Fwd: Trigonometric equations

 

Jean Pellegri suggested another, simpler, approach, namely to solve for
tan(x):

 

(%i2) load(to_poly_solver)$

...

(%i3) eq: 2*cos(x)^2*x0-2*sin(x)*cos(x)*y0=x0;

(%o3) 2*cos(x)^2*x0-2*cos(x)*sin(x)*y0 = x0

(%i4) subst(atan(q),x,%);

(%o4) 2*x0/(q^2+1)-2*q*y0/(q^2+1) = x0

(%i5) solve(%,q);

(%o5) [q = -(sqrt(y0^2+x0^2)+y0)/x0,q = (sqrt(y0^2+x0^2)-y0)/x0]

(%i6) subst(tan(x),q,%);

(%o6) [tan(x) = -(sqrt(y0^2+x0^2)+y0)/x0,tan(x) = (sqrt(y0^2+x0^2)-y0)/x0]

 

To put this in terms of x:

 

(%i7) map(atan,%);

(%o7) [atan(tan(x)) = -atan((sqrt(y0^2+x0^2)+y0)/x0),

       atan(tan(x)) = atan((sqrt(y0^2+x0^2)-y0)/x0)]

 

Note that Maxima is cautious, and does not simplify atan(tan(x)) to x; For
example, atan(tan(%pi)) is 0, not %pi.

 

            -s

 

-------------- next part --------------
A non-text attachment was scrubbed...
Name: not available
Type: image/jpeg
Size: 55280 bytes
Desc: not available
URL: <http://www.math.utexas.edu/pipermail/maxima/attachments/20100902/929b14ff/attachment-0001.jpe>;
-------------- next part --------------
A non-text attachment was scrubbed...
Name: eqtrig.wxm
Type: application/octet-stream
Size: 956 bytes
Desc: not available
URL: <http://www.math.utexas.edu/pipermail/maxima/attachments/20100902/929b14ff/attachment-0001.obj>;