Subject: finding roots of polynomials with high precision
From: Ether Jones
Date: Sun, 5 Sep 2010 09:19:51 -0700 (PDT)
In Maple I can find the real root of x^5-x+1 to 50 decimal places like this:
evalf(solve(x^5-x+1=0,x),50);
-1.1673039782614186842560458998548421807205603715255
How do I do this in Maxima?
I tried this but got the wrong answer:
fpprec: 50;
g(x):=bfloat(x^5-x+1);
bfloat(find_root(g(x),x,-2,-1));
(%o14)? ? ? - 1.1673039782614187398479543844587169587612152099609b0