I too am skeptical
Example :
(sqrt(x+1)-sqrt(x))*cos(x) ========? 0 X UND = 0
(sqrt(x+1)-sqrt(x))*tan(x) ========? 0 X UND = UND
jean
De : maxima-bounces at math.utexas.edu [mailto:maxima-bounces at math.utexas.edu]
De la part de Richard Hennessy
Envoy? : vendredi 10 septembre 2010 20:48
? : Stavros Macrakis; Barton Willis
Cc : maxima List
Objet : Re: [Maxima] Extended real arithmetic (was Re: inf - inf = 0 ??)
I am a little skeptical about it. My biggest concern is that the axioms of
extended real or complex arithmetic may not be self consistent. If that is
the case then you could prove that an answer is correct and incorrect at the
same time by using different methods perhaps. If they are in fact self
consistent and complete than I am all for it.
Rich
From: Stavros <mailto:macrakis at alum.mit.edu> Macrakis
Sent: Friday, September 10, 2010 10:03 AM
To: Barton Willis <mailto:willisb at unk.edu>
Cc: maxima List <mailto:maxima at math.utexas.edu>
Subject: Re: [Maxima] Extended real arithmetic (was Re: inf - inf = 0 ??)
Especially disappointing because extended real arithmetic can in fact solve
this correctly:
p1: sqrt(x+1)-sqrt(x)$
p2: cos(x)$
limit(p1,x,inf) => 0
limit(p2,x,inf) => IND
from which Maxima should be able using extended real arithmetic that
limit(p1*p2) => 0
On Fri, Sep 10, 2010 at 08:52, Barton Willis <willisb at unk.edu> wrote:
(((sqrt(x+1)-sqrt(x)))*cos(x),x,inf);
_____
_______________________________________________
Maxima mailing list
Maxima at math.utexas.edu
http://www.math.utexas.edu/mailman/listinfo/maxima