Yes. Look at ? ratweight
Example:
(%i2) m: matrix([x^2+y-1,x+y^2],[1+x+x^2,x-y]);
(%o2) matrix([y+x^2-1,y^2+x],[x^2+x+1,x-y])
(%i3) determinant(m);
(%o3) (x-y)*(y+x^2-1)-(x^2+x+1)*(y^2+x)
(%i4) determinant(rat(m));
(%o4) (-x^2-x-2)*y^2+(-x^2+x+1)*y-x^2-2*x
(%i5) ratweight(x,1,y,1)$
(%i6) ratwtlvl:3$
(%i7) determinant(rat(m));
(%o7) (-x-2)*y^2+(-x^2+x+1)*y-x^2-2*x
(%i8) ratwtlvl:2$
(%i9) determinant(rat(m));
(%o9) -2*y^2+(x+1)*y-x^2-2*x
(%i10) ratwtlvl:1$
(%i11) determinant(rat(m));
(%o11) y-2*x
On Wed, Oct 20, 2010 at 17:12, Igor Mosyagin <c6h10o5 at gmail.com> wrote:
> Hi all.
>
> I have a matrice with some symbolical constants as it's values and I
> need to calculate it's determinant up to the concrete order of
> expressions.
> Is there a way to do that in maxima?
> For example, it should preserve x^2*y^2 or x*y*z^2, but drop x^5 or
> x*y*z^3.
>
> Igor Mosyagin
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>