rule for nn^3*K3(xx,yy) --> K3(nn*xx, nn*yy)?



On 11/23/10, Rhys Pratt <listofx at gmail.com> wrote:

> K3 is a homogeneous polynomial of order 3.
> I want to pull the factor a/n out of its parameters to
> make K3() evaluated near (1,1) (assumed that n->infinity)
>
> (%i3) matchdeclare([xx,yy], true, cc, true);
> (%o3) done
>
> (%i14) defrule(r1, cc^3*K3(xx,yy), K3(cc*xx, cc*yy));
> (%o14) r1:cc^3*K3(xx,yy)->K3(cc*xx,cc*yy)
>
> (%i15) r1((n/a)^3*K3((b*log(n))/n^2+a/n,(b*log(n-1))/(n-1)^2+a/(n-1)));
> (%o15) false

It turns out Maxima doesn't keep (n/a)^3 together as one term
(instead it simplifies to n^3 * a^(-3)). How about this.

matchdeclare ([aa, bb, cc, dd], all);
defrule (r1, aa * bb^3 * K3(cc, dd), aa * K3(bb*cc, bb*dd));
defrule (r2, aa * (1/bb^3) * K3(cc, dd), aa * K3(cc/bb, dd/bb));

e : (n/a)^3*K3((b*log(n))/n^2+a/n,(b*log(n-1))/(n-1)^2+a/(n-1));
apply1 (e, r1, r2);
 => K3(n*(b*log(n)/n^2+a/n)/a,n*(b*log(n-1)/(n-1)^2+a/(n-1))/a)
expand (%);
 => K3(b*log(n)/(a*n)+1,b*n*log(n-1)/(a*n^2-2*a*n+a)+n/(n-1))

Hope this helps, but I wouldn't be too surprised if it fails
to match some expression which nominally has the form
required by r1 or r2.

best

Robert Dodier