[newbie] removing complex solutions



By the way: For %beta > 0, the polynomial discriminant tells us that
(%beta*x^3-2*%beta*x^2+%beta*x-3*x+2) = 0 has three real roots; for %beta 
< 0,
there is exactly one real root. For %beta > 0, the roots might not appear 
to be real, 
but they are (keeping it real is hard to do when you use radicals to solve 
a cubic).

(%i65) %beta*x^3-2*%beta*x^2+%beta*x-3*x+2$
(%i66) sol : solve(%,x)$
(%i67) subst(%beta=1,%)$

(%i68) rectform(float(%));
(%o68) [x=0.68889218253402,x=-1.170086486626034,x=2.481194304092016]

(%i69) subst(%beta=-1,sol)$
(%i70) rectform(float(%));
(%o70) 
[x=1.633170240915238*%i+0.68055154026432,x=0.68055154026432-1.633170240915238*%i,x=0.63889691947135]

--Barton

maxima-bounces at math.utexas.edu wrote on 11/29/2010 10:09:47 AM:

> [image removed] 
> 
> Re: [Maxima] [newbie] removing complex solutions
> 
> Barton Willis 
> 
> to:
> 
> Hugo Coolens
> 
> 11/29/2010 10:09 AM
> 
> Sent by:
> 
> maxima-bounces at math.utexas.edu
> 
> Cc:
> 
> maxima-bounces, "hugo.coolens", maxima mailing list
> 
> By default, Maxima assumes that all variables are real; the command 
> assume(%beta > 0) 
> tells Maxima that %beta is positive.
> 
> The solve function makes little use of the assumed facts. Thus doing 
> assume(%beta > 0) 
> will not expunge the non-real solutions.
> 
> --Barton
> 
> 
> > "hugo.coolens", maxima mailing list
> > 
> > Can I tell Maxima somewhere/somehow that %beta is real and positive 
and 
> > thus make my original question solvable by Maxima?
> 
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima