Weird behavior: imaginary factor



Try setting radexpand to false.

(%i1) sqrt(%epsilon^2 - 2*A*(1 + cos(%theta(t))));
(%o1) sqrt(%epsilon^2-2*(cos(%theta(t))+1)*A)
(%i2) taylor(%,t,0,0), radexpand : false;
(%o2)/T/ sqrt((-2*cos(%theta(0))-2)*A+%epsilon^2)+...


--Barton

maxima-bounces at math.utexas.edu wrote on 12/01/2010 07:53:53 AM:

> [image removed] 
> 
> [Maxima] Weird behavior: imaginary factor
> 
> Juan Pablo Carbajal 
> 
> to:
> 
> maxima mailing list
> 
> 12/01/2010 07:54 AM
> 
> Sent by:
> 
> maxima-bounces at math.utexas.edu
> 
> Hi all,
> 
> Thanks a lot for the answers on differentiation of sums, I will use
> those functions as cornerstones for my own version.
> 
> I do not understad why I am getting this output in wxMaxima
> 
> L(t) := sqrt(%epsilon^2 - 2*A*(1 + cos(%theta(t))));
> assume(%epsilon > 0,A>0);
> declare(%theta,real)$
> declare(L,real)$
> declare(t,real)$
> powerdisp: false$
> tayT2 : taylor(L(t),t,0,0);
> 
> The taylor function is taking %i as common factor (!!??), rather weird, 
right?
> 
> I was expecting ot be equal to the output of
> 
> at(L(t),t=0);
> 
> 
> Any ideas how can I avoid this behavior.
> 
> Thanks
> 
> -- 
> M. Sc. Juan Pablo Carbajal
> -----
> PhD Student
> University of Z?rich
> www.ailab.ch/carbajal
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima