simplify



-----maxima-bounces at math.utexas.edu wrote: -----

>assume(a>0)$
>(2/sqrt(((sqrt(3)*a)/2+a/sqrt(2))^2+a^2/4)+
>2/sqrt((a/sqrt(2)-(sqrt(3)*a)/2)^2+a^2/4)+
>2^(3/2)/(sqrt(3)*a));
>
>How?to?get?simpler?form?of?the?above?expression?

Try:

(%i1) assume(a>0)$
(%i2) (2/sqrt(((sqrt(3)*a)/2+a/sqrt(2))^2+a^2/4)+2/sqrt((a/sqrt(2)-(sqrt(3)*a)/2)^2+a^2/4)+2^(3/2)/(sqrt(3)*a))$
(%i3) ratsimp(%), algebraic : true;
(%o3) -((4*sqrt(3)-3*2^(3/2))*sqrt(sqrt(2)*sqrt(3)+3)+(-4*sqrt(3)-3*2^(3/2))*sqrt(3-sqrt(2)*sqrt(3))-2^(3/2)*sqrt(3))/(3*a)
(%i4) rootscontract(%);
(%o4) -((4*sqrt(3)-3*2^(3/2))*sqrt(sqrt(6)+3)-2*sqrt(6)+(-4*sqrt(3)-3*2^(3/2))*sqrt(3-sqrt(6)))/(3*a)


--Barton