unresolved constants in DE solution



Ether Jones <maxima at etherjones.us> writes:
> Why do I have the 2 unresolved constants %k2 and %k1
> at %o5 below?  
>
> I can't think of any other initial conditions
> beside 'diff(x,t)=0 and x=0 at t=0

I think that you may have omitted some of the output you get when
running the command. Your transcript follows:

> 'diff(x,t,2) + A*'diff(x,t)^2 + B*'diff(x,t) + D = 0;
>
> ode2(%,x,t);
>
> p;
>
> ic2(%,t=0,x=0,'diff(x,t)=0);
>                                                2
>                              dx      dx 2     d x
> (%o1)                    D + -- B + (--)  A + --- = 0
>                              dt      dt         2
>                                               dt
> (%i2) 
>              2
> Is  4 A D - B   positive or negative?
>
>                                                         2
>                                 (t + %k1) sqrt(4 A D - B )
>                       2 log(sec(--------------------------)) + t B
>                                             2
> (%o2)       x = %k2 - --------------------------------------------
>                                           2 A

and mine:

Maxima 5.23post http://maxima.sourceforge.net
using Lisp SBCL 1.0.46.0.debian
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
(%i1) 'diff(x,t,2) + A*'diff(x,t)^2 + B*'diff(x,t) + D = 0;
                                               2
                             dx      dx 2     d x
(%o1)                    D + -- B + (--)  A + --- = 0
                             dt      dt         2
                                              dt

<snip a mistake>

(%i3) ode2(%o1, x, t);
             2
Is  4 A D - B   positive or negative?

pos;
                                                        2
                                (t + %k1) sqrt(4 A D - B )
                      2 log(sec(--------------------------)) + t B
                                            2
(%o3)       x = %k2 - --------------------------------------------
                                          2 A
(%i4) ic2(%,t=0,x=0,'diff(x,t)=0);
(%o4)                                 []
(%i5) 


The good news is that you can actually solve for %k1 and %k2
yourself. Substituting in zeros for t in %o3 and its derivative, I get
the following pair of equations:

(%i11) ics: [rhs(%o5) = 0, %o10 = 0];
                                        2
                      %k1 sqrt(4 A D - B )
              log(sec(--------------------))
                               2
(%o11) [%k2 - ------------------------------ = 0, 
                            A
                                                 2
                        2      %k1 sqrt(4 A D - B )
          sqrt(4 A D - B ) tan(--------------------) + B = 0]
                                        2

Note that the second is free of %k2. Let d = sqrt(4*A*D-B^2)/2 and then
solve:

(%i15) ratsubst(d, sqrt(4*A*D-B^2)/2, second(ics));
(%o15)                      B + 2 d tan(%k1 d) = 0
(%i16) solve(%, %k1);

solve: using arc-trig functions to get a solution.
Some solutions will be lost.
                                             B
                                       atan(---)
                                            2 d
(%o16)                        [%k1 = - ---------]
                                           d
(%i17) 


Now, notice that

(%i12) sec(atan(x)), trigreduce;
                                       2
(%o12)                           sqrt(x  + 1)


and, since,

(%i27) ratsubst(d, sqrt(4*A*D-B^2)/2, first(ics));
                          %k2 A - log(sec(%k1 d))
(%o27)                    ----------------------- = 0
                                     A

this is going to be quite nice. The displayed form on substituting in is
massive and ugly, but solving you get:

(%i28) solve(%o26, %k2);
                                          2
                                         B
                                    log(---- + 1)
                                           2
                                        4 d
(%o28)                       [%k2 = -------------]
                                         2 A


Tada!


Rupert
-------------- next part --------------
A non-text attachment was scrubbed...
Name: not available
Type: application/pgp-signature
Size: 315 bytes
Desc: not available
URL: <http://www.math.utexas.edu/pipermail/maxima/attachments/20110321/3cae2d51/attachment.pgp>;