Help with Plancherel's theorem



I'm trying to get up to speed with Maxima.

Can someone explain why I don't get "0" for %o12?

Here's the input:
====
declare(x,[real,scalar])$
declare(k,[real,scalar])$

/* Gaussian. */
gauss(x):=%e^(-x^2)$

/* Fourier transform. */
FT(fx,x,k):=integrate(fx*%e^(-2 * %i * %pi * k * x), x, minf, inf)$

/* An even function (gaussian) + odd function (two shifted gaussians, one negative): */
feven:gauss(x)$
fodd:gauss(x - 1/2) - gauss(x + 1/2)$
f:feven+fodd$

/* "Plancherel's sum" - just integrate the square of the modulus over all values. */

planch(f,v):=factor(integrate(abs(f)^2,v,minf,inf))$

/* I expect these to all be 0. */

planch(feven,x) - planch(FT(feven,x,k),k);  /* OK. */
planch(fodd,x)  - planch(FT(fodd,x,k),k);   /* OK. */
planch(f,x)     - planch(FT(f,x,k),k);      /* Huh? */
====

Here's the output:
====
[dufault at flipper cross]$ maxima
Maxima 5.23.2 http://maxima.sourceforge.net
using Lisp SBCL 1.0.40-1.fc14
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
(%i1) batch("simple.mac")$

read and interpret file: /home/dufault/play/cross/simple.mac
(%i2)                     declare(x, [real, scalar])
(%i3)                     declare(k, [real, scalar])
                                               2
                                            - x
(%i4)                         gauss(x) := %e
                                        - 2 %i %pi k x
(%i5)    FT(fx, x, k) := integrate(fx %e              , x, minf, inf)
(%i6)                          feven : gauss(x)
                                       1          1
(%i7)                 fodd : gauss(x - -) - gauss(- + x)
                                       2          2
(%i8)                          f : fodd + feven
                                                  2
(%i9)      planch(f, v) := factor(integrate(abs(f) , v, minf, inf))
(%i10)           planch(feven, x) - planch(FT(feven, x, k), k)
(%o10)                                 0
(%i11)            planch(fodd, x) - planch(FT(fodd, x, k), k)
(%o11)                                 0
(%i12)               planch(f, x) - planch(FT(f, x, k), k)
             (3 sqrt(%e) - 2) sqrt(%pi)   (sqrt(%e) - 2) sqrt(%pi)
(%o12)       -------------------------- + ------------------------
                  sqrt(2) sqrt(%e)            sqrt(2) sqrt(%e)
(%i14) 
====


Peter
-----------------
Peter Dufault
HD Associates, Inc.      Software and System Engineering