I have simplified some of the equations using a divide and conquer kind of
strategy.
And reduced my problem to a two variable one.
Now the equations are :
exp1=(2*beta4^2+2*beta3^2+2*beta2^2)*d^2*z1^2+(
(4*alpha4*beta4+4*alpha3*beta3+4*alpha2*beta2)*d^2*y1+4*beta4*d^2*gamma4+4*b
eta3*d^2*gamma3+4*
beta2*d^2*gamma2)*z1+(2*alpha4^2+2*alpha3^2+2*alpha2^2)*d^2*y1^2+
(4*alpha4*d^2*gamma4+4*alpha3*d^2*gamma3+4*alpha2*d^2*gamma2)*y1+l2^2-l1^2+2
*d^2*gamma4^2+2*d^2*
gamma3^2+2*d^2*gamma2^2
exp2=zp^2-2*z1*zp+(beta1^2+1)*z1^2+(2*alpha1*beta1*y1-2*beta1*xp+2*beta1*gam
ma1)*z1+yp^2
-2*y1*yp+(alpha1^2+1)*y1^2+(2*alpha1*gamma1-2*alpha1*xp)*y1+xp^2-2*gamma1*xp
-l1^2+gamma1^2
exp3=(-4*beta4*d*z1-4*alpha4*d*y1-4*d*gamma4)*zp+(4*beta4+4*beta1*beta2)*d*z
1^2+(-4*
beta3*d*yp+(4*beta3+4*alpha1*beta2+4*alpha2*beta1+4*alpha4)*d*y1-4*beta2*d*x
p+4*d*gamma4+4*
beta1*d*gamma2+4*beta2*d*gamma1)*z1+(-4*alpha3*d*y1-4*d*gamma3)*yp+(4*alpha3
+4*alpha1*alpha2)*
d*y1^2+(-4*alpha2*d*xp+4*d*gamma3+4*alpha1*d*gamma2+4*alpha2*d*gamma1)*y1-4*
d*gamma2*xp-3*l2^2+
3*l1^2+4*d*gamma1*gamma2
I just want to find, y1 & z1 and everything else is a constant.
Can you please help me how to solve these. I have tried running the solution
a lot of times but it gives the same error I stated earlier.