unable to find cholesky factorization



If I'm not mistaken, the Cholesky decomposition only exists if the matrix is
both Hermitian and positive definite.

To guarantee that, you need to assume both determinant(D)>0 *and also* a>0.

Then Maxima finds the decomposition:

(%i2) D:matrix([a,b],[b,c])$
(%i3) cholesky(D);
Unable to find the Cholesky factorization
 -- an error. To debug this try: debugmode(true);
(%i4) assume(determinant(D)>0)$
(%i5) cholesky(D);
Unable to find the Cholesky factorization
 -- an error. To debug this try: debugmode(true);
(%i6) assume(a>0)$
(%i7) cholesky(D);
(%o7) matrix([sqrt(a),0],[b/sqrt(a),sqrt(c-b^2/a)])
<<<<<<<<<<<<<<<<<<<<<<<<

Tested in Maxima 5.23.2 GCL 2.6.8 WIndows 7

           -s

On Mon, Aug 15, 2011 at 10:18, gabriele <dante_monti2 at yahoo.it> wrote:

> ith wxmaxima 0.7.1 ubuntu hardy
> D:matrix([a,b],[b,c]);
> cholesky(D);
> Unable to find the Cholesky factorization -- an error.  To debug this try
> debugmode(true);
>
> even with
>
> assume(determinant(D)>0);
> cholesky(D);
> Unable to find Cholesky etc...
>
> but
>
> cholesky(transpose(D).D);
> Is  b2+a2  positive or zero?positive;
> result...
> which means cholesky symbolic works..
> ______________________________**_________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/**mailman/listinfo/maxima<http://www.math.utexas.edu/mailman/listinfo/maxima>;
>