Simplification of vector norms, logs and fractions



Hello,

I have two vectors, R = [x, y]^T and ri = [xi, yi]^T and wish to Taylor
expand the function:

  log(abs(R - ri))

about ri = [0,0]^T where abs(v) == sqrt(v.v).  So:

(%i1) R : matrix([x],[y]); ri : matrix([xi],[yi]);
                                     [ x ]
(%o1)                                [   ]
                                     [ y ]
                                    [ xi ]
(%o2)                               [    ]
                                    [ yi ]
(%i3) taylor(log(sqrt((R-ri).(R-ri))),[xi,yi],[0,0],2);
              2    2
         log(y  + x )   x xi + y yi
(%o3)/T/ ------------ - -----------
              2            2    2
                          x  + y
                            2    2    2                     2    2    2
                          (x  - y ) xi  + 4 y x yi xi + (- x  + y ) yi
                        - ---------------------------------------------
                                         4      2  2      4
                                      2 x  + 4 y  x  + 2 y

I am wondering how I can simplify the result so that 1/2*log(x^2+y^2) =>
log(abs(R)), x^2 + y^2 => abs(R)^2.  It would be nice if the last term
could be broken up as:

                        2                 2
             2  1    2 y       2  1    2 x
           yi  (-- - ----)   xi  (-- - ----)
                 2     4           2     4
                R     R           R     R      2 x xi y yi
           --------------- + --------------- - -----------
                  2                 2               4
                                                   R

I have played around with the various expand/contract/ratsimp options
but can find nothing that does that kind of expansion.  Can anyone point
me in the correct direction?

Regards, Freddie.

-------------- next part --------------
A non-text attachment was scrubbed...
Name: signature.asc
Type: application/pgp-signature
Size: 262 bytes
Desc: OpenPGP digital signature
URL: <http://www.math.utexas.edu/pipermail/maxima/attachments/20111006/20acfe50/attachment.pgp>;