limit / Continued fraction



You want the solution with a positive xx.  Evaluate the solutions
numerically to see which xx is positive.

             -s

On Thu, Oct 20, 2011 at 13:49, Adam Majewski <adammaj1 at o2.pl> wrote:

> On 18.10.2011 15:40, Stavros Macrakis wrote:
>
>> You can set up the equations for a continued fraction quite easily:
>>
>>  eqs: [  a = cfdisrep([0,3,2,1000,xx]),
>>            xx = cfdisrep([1,xx])   ]  /* the repeating part */ $
>>
>> solve(eqs,[a,xx]);
>>
>
> Dear Stavros,
>
> Thx for solution.
> It gives two values.Could you tell which choose ?
>
> Best regards
>
>
> Adam
>
>
>>
>> On Sun, Oct 16, 2011 at 16:25, Adam Majewski<adammaj1 at o2.pl>  wrote:
>>
>>  Hi,
>>>
>>> I would like to find limit of Continued fraction [3,2,1000,1...]
>>> http://www.warwick.ac.uk/~**masiay/Research/Siegel.html<http://www.warwick.ac.uk/~masiay/Research/Siegel.html>;
>>>
>>> In maxima I can compute n-term finite fraction :
>>> a:
>>>
>>> [0,3,2,1000,1,1,1,1,1,1,1,1,1,**1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**
>>> 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**
>>> 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**
>>> 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**
>>> 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**
>>> 1,1,1,1,1]
>>>  (%o1)
>>>
>>> [0,3,2,1000,1,1,1,1,1,1,1,1,1,**1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**
>>> 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**
>>> 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**
>>> 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**
>>> 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,**
>>> 1,1,1,1,1]
>>>  (%i2) t:cfdisrep(a)
>>>  (%o2) (1)/(3+(1)/(2+(1)/(1000+(1)/(**1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+**
>>> (1)/(1
>>> +(1)/(1+(1)/(1+(1)/(1+(1)/(1+(**1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)**
>>> /(1+(1)/(1
>>> +(1)/(1+(1)/(1+(1)/(1+(1)/(1+ (1)/(1+(1)/(1+(1)/(1+(1)/(1+(**
>>> 1)/(1+(1)/(1
>>> +(1)/(1+(1)/(1+(1)/(1+(1)/(1+(**1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)**
>>> /(1+(1)/(1
>>> +(1)/(1+(1)/(1+(1)/(1+(1)/(1+(**1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)**
>>> /(1+(1)/(1
>>> +(1)/(1+(1)/(1+(1)/(1+(1)/(1+(**1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)**
>>> /(1+(1)/(1
>>> +(1)/(1+(1)/(1+(1)/(1+(1)/(1+(**1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)**
>>> /(1+(1)/(1
>>> +(1)/(1+(1)/(1+(1)/(1+(1)/(1+(**1)/(1+(1)/(1+1/(1+1/(1+1/(1+1/**
>>> (1+1/(1+1/(1
>>> +1/(1+1/(1+1/(1+1/(1+1/(1+1/(**1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(**
>>> 1+1/(1+1/(1+1/
>>> (1+1/(1+1/(1+1/(1+1/(1+1/(1+1/**(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/**
>>> (1+1/(1+1/(1
>>> +1/(1+1/(1+1/(1+1/(1+1/(1+1/(**1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(**
>>> 1+1/(1+1/(1+1/
>>> (1+1/(1+1/(1+1/(1+1/(1+1/(1+1/**(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/**
>>> (1+1/(1+1/(1
>>> +1/(1+1/(1+1/(1+1/(1+1/(1+1/(**1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(**1
>>>
>>> +1/1))))))))))))))))))))))))))**))))))))))))))))))))))))))))))**
>>> ))))))))))))))))))))))))))))))**))))))))))))))))))))))))))))))**
>>> ))))))))))))))))))))))))))))))**)))))
>>>  (%i3) float(t)
>>>
>>> Can I find it's limit ?
>>>
>>> TIA
>>>
>>> Adam
>>>
>>> ______________________________**_________________
>>> Maxima mailing list
>>> Maxima at math.utexas.edu
>>> http://www.math.utexas.edu/**mailman/listinfo/maxima<http://www.math.utexas.edu/mailman/listinfo/maxima>;
>>>
>>>
>>
>>
>> ______________________________**_________________
>> Maxima mailing list
>> Maxima at math.utexas.edu
>> http://www.math.utexas.edu/**mailman/listinfo/maxima<http://www.math.utexas.edu/mailman/listinfo/maxima>;
>>
>
>
> ______________________________**_________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/**mailman/listinfo/maxima<http://www.math.utexas.edu/mailman/listinfo/maxima>;
>