integrate bessel_k(2,%i*y) surprise



Am Donnerstag, den 27.10.2011, 10:13 -0700 schrieb Edwin Woollett:
> On Oct. 26, 2011, Raymond Toy wrote:
> -------------------------------
> >> (%o26) 1.736293756153568-2.1367387806763253E+42*%i
> >> ----------------------------------------------------------------
> >> Where does the 10^42 come from??
> >
> >It comes from the bessel_y(1,100*%i) term that integrate produces.   I
> >checked the value of this and I think it's correct.  I assume that
> >integrate produces the incorrect result.  I didn't check that.
> ----------------------------------------------
> I agree that bessel_y(1,100*%i) produces 10^42.
> I also assume that integrate produces the incorrect result.
> 
> Wolfram alpha gives a numerical value
>   NIntegrate[BesselK[2,y*I],{y,1,100}]  --->
> 
>     -1.42033 + 1.62942*I
> 
> and gives the indefinite integral in terms of the hypergeomentric
> function: the Meijer G-function.

I have already corrected the integrals for bessel_i and bessel_y. I will
check the integrals for bessel_k, too. I suppose an error in the
implementation of the formula.

Dieter Kaiser