About computing integral integrate(exp(-x^k),x,0,1)



 Sorry, in previous message was formula for integrate(exp(x^k),x,0,1)
For integrate(exp(-x^k),x,0,1) formula is more simpler:

integrate(exp(-x^k),x,0,1)=(gamma(1/k)-gamma_incomplete(1/k,1))/k,

where k is natural number.

 Proof.
(%i1) S:'integrate(exp(-x^k),x,0,1);
(%o1) integrate(%e^(-x^k),x,0,1)
(%i2) assume(k>0)$ declare(k,integer)$
(%i4) changevar(S, y=x^k, y, x);
(%o4) integrate(%e^(-y)/y^((k-1)/k),y,0,1)/k
(%i5) ev(%, nouns),factor;
(%o5) -(gamma_incomplete(1/k,1)-gamma(1/k))/k
(%i6) subst(-1=polarform(-1),%),ratsimp;
(%o6) -(gamma_incomplete(1/k,1)-gamma(1/k))/k
 q. e. d.

(%i7) define(F(k),%);
(%o7) F(k):=-(gamma_incomplete(1/k,1)-gamma(1/k))/k

 For example, we compute integral, if k=3 or k=4.
(%i8) F(3);
(%o8) -(gamma_incomplete(1/3,1)-gamma(1/3))/3
(%i9) float(%), numer;
(%o9) 0.807511182139671
(%i10) /* test*/
first(quad_qags(exp(-x^3),x,0,1));
(%o10) 0.807511182139671

(%i11) F(4);
(%o11) -(gamma_incomplete(1/4,1)-gamma(1/4))/4
(%i12) float(%), numer;
(%o12) 0.844838594757102
(%i13) /* test*/
first(quad_qags(exp(-x^4),x,0,1));
(%o13) 0.844838594757102

Aleksas D.