Make check failures



On 01/24/2012 05:17 PM, Robert Dodier wrote:
> On 1/24/12, Paul Bowyer<pbowyer at olynet.com>  wrote:
>
>> So far my lisp programming is to the point where I can write simple
>> programs around CLX, but I haven't tried anything as advanced as maxima.
>> I think it would be well beyond my abilities.
>>
>> If I discover anything in my stumblings with maxima, I'll post them, but
>> don't hold your breath waiting...
> OK, well, Maxima is a big, messy program but in some ways it is not
> too terribly sophisticated. I think it's likely that you can readily
> learn enough about Lisp&  Maxima to make useful contributions.
>
> best,
>
> Robert Dodier
>
Robert:

I tried updating CCL and rebuilding maxima, but it made no difference 
with the testsuite errors. The CCL maxima runtime still fails rtest15, 
problems 37, 193, and 196.

build_info ();
Maxima version: 5.26.0_26_gc4216e7
Maxima build date: 18:32 1/28/2012
Host type: i686-pc-linux-gnu
Lisp implementation type: Clozure Common Lisp
Lisp implementation version: Version 1.7-r15188M  (LinuxX8632)

(%i2) run_testsuite (display_all = true, tests=[rtest15]);

********************** Problem 37 ***************
Input:
     2         2 - %pi
  sin (3 a) sin (----- + a + b)
                   3
(-----------------------------
             2     %pi
          sin (a - ---)
                    3
                                 - %pi
    2 sin(a) sin(3 a) cos(b) sin(----- + a + b) sin(3 a + 3 b)
                                   3
  - ----------------------------------------------------------
                             %pi
                     sin(a - ---) sin(a + b)
                              3
       2       2
    sin (a) sin (3 a + 3 b)
  + -----------------------, result : trigrat(%%),
             2
          sin (a + b)
expected : (- (- 9 + 10 cos(2 a) - 2 sqrt(3) sin(2 a) - cos(4 a)
  + sqrt(3) sin(4 a) + 10 cos(2 b) - 2 sqrt(3) sin(2 b) - cos(4 b)
  + sqrt(3) sin(4 b) - 4 cos(2 b - 2 a) - 8 cos(2 a + 2 b)
  + 4 sqrt(3) sin(2 a + 2 b) + 2 cos(4 a + 2 b) - 2 sqrt(3) sin(4 a + 2 b)
  + 2 cos(2 a + 4 b) - 2 sqrt(3) sin(2 a + 4 b) - cos(4 a + 4 b)
  + sqrt(3) sin(4 a + 4 b)))/4, ratsimp(result - expected))


Result:
Polynomial quotient is not exact
error-catch

This differed from the expected result:
0

********************** Problem 193 ***************
Input:
                2
               t  log(t)
integrate(-----------------, t, 0, 1)
             2            4
           (t  - 1) (1 + t )


Result:
                    2
   (sqrt(2) - 2) %pi
- ------------------
           32

This differed from the expected result:
                  2
(sqrt(2) - 1) %pi
------------------
         9/2
        2

********************** Problem 196 ***************
Input:
                                         1
factor(expand(sqrtdenest(integrate(------------, x, 0, 1))))
                                    1          4
                                    - + (x - 3)
                                    2
                                     3/4      9/4
                     73 + sqrt(2) + 2    - 3 2
  - factor((- (- log(----------------------------)
                                  33
                        3/4      9/4              3/4    5/2    13/4
        73 + sqrt(2) - 2    + 3 2              - 2    + 2    - 2
  + log(----------------------------) + 2 atan(---------------------)
                     33                                3/4    13/4
                                                 98 + 2    - 2
            3/4    5/2    13/4
           2    + 2    + 2         7/4
  + 2 atan(-------------------)))/2   )
                   3/4    13/4
           - 98 + 2    - 2


Result:
          13/4    5/2    3/4              13/4    5/2    3/4
         2     + 2    + 2              - 2     + 2    - 2
(2 atan(-------------------) + 2 atan(---------------------)
            13/4    3/4                    13/4    3/4
         - 2     + 2    - 98            - 2     + 2    + 98
           9/4    3/4                            9/4    3/4
        3 2    - 2    + sqrt(2) + 73        - 3 2    + 2    + sqrt(2) + 73
  + log(----------------------------) - log(------------------------------))
                     33                                   33
                 9/4    3/4
   7/4        3 2    - 2    + sqrt(2) + 73
/2    - (log(----------------------------)
                           33
             9/4    3/4
        - 3 2    + 2    + sqrt(2) + 73
  - log(------------------------------) - 2
                      33
           3/4                      1/4
       79 2    + 365 sqrt(2) + 877 2    + 5
  atan(------------------------------------)
                      10657
                 3/4                      1/4
           - 79 2    + 365 sqrt(2) - 877 2    + 5    7/4
  + 2 atan(--------------------------------------))/2
                           10657

This differed from the expected result:
0

I manually fed parts of problem 37 into xmaxima to see what happens:

%i1) sin(a)^2*sin(3*b+3*a)^2/sin(b+a)^2
     -2*sin(a)*sin(3*a)*cos(b)*sin(b+a-%pi/3)*sin(3*b+3*a)
     /(sin(a-%pi/3)*sin(b+a))
     +sin(3*a)^2*sin(b+a-%pi/3)^2/sin(a-%pi/3)^2;

and I got the following output:

         2       2
       sin (a) sin (3 b + 3 a)
(%o1) -----------------------
                2
             sin (b + a)
                                         %pi
    2 sin(a) sin(3 a) cos(b) sin(b + a - ---) sin(3 b + 3 a)
                                          3
  - --------------------------------------------------------
                            %pi
                    sin(a - ---) sin(b + a)
                             3
       2         2         %pi
    sin (3 a) sin (b + a - ---)
                            3
  + ---------------------------
              2     %pi
           sin (a - ---)
                     3
(%i2) trace(ratexpand);
(%o2)                             [ratexpand]
(%i3) trigrat(%o1);
1 Enter ratexpand [%i b]
1 Exit  ratexpand %i b
                    1
1 Enter ratexpand [-]
                    2
                   1
1 Exit  ratexpand -
                   2
1 Enter ratexpand [%i a]
1 Exit  ratexpand %i a <-- falls apart here
Polynomial quotient is not exact

I did the same for the cmucl runtime with xmaxima and it completed 
successfully:
1 Enter ratexpand [%i b]
1 Exit  ratexpand %i b
                    1
1 Enter ratexpand [-]
                    2
                   1
1 Exit  ratexpand -
                   2
1 Enter ratexpand [%i a]
1 Exit  ratexpand %i a <-- completes successfully
                                          %i a 8
more output follows...

I didn't go any further because I have difficulty following the lisp 
code in maxima. Maybe that will change as I spend more time trying to 
understand it.

Paul Bowyer