Simplifying atan expressions



How come log(-%i) doesn't already simplify by itself, instead of requiring rectform to do it?

Is there some switch that Maxima uses to force log(constant) to simplify if it can?

At 01:12 PM 2/20/2012, Stavros Macrakis wrote:
>Henry,
>
>Yes, this derivation is essentially the same as the bottomup rectform.  In fact:
>
>    expr: logcontract(logarc(4*atan(1/5)-atan(1/239)));
>    rectform(substpart(e1:rectform(piece),expr,1,2,1))  => %pi/4
>
>You'll see that e1 here is -%i.
>
>What rectform does internally by default looks more like
>
>    rectform(substpart(e2:polarform(piece),expr,1,2,1));
>
>where e2 isn't at all helpful.
>
>I agree that most mathematical functions (sin, etc.) and form-changing routines (factor etc.) should distribute over "=".
>
>           -s
>
>On Mon, Feb 20, 2012 at 15:45, Henry Baker <hbaker1 at pipeline.com> wrote:
>result=4*atan(1/5)-atan(1/239);
>                                       1          1
>(%o1)                   result = 4 atan(-) - atan(---)
>                                       5         239
>(%i2) lhs(%)=logcontract(logarc(rhs(%)));
>                                             4
>                                     (%i - 5)  (%i + 239)
>                            %i log(- --------------------)
>                                                        4
>                                     (%i - 239) (%i + 5)
>(%o2)               result = ------------------------------
>                                          2
>(%i3) %*2/%i;
>                                               4
>                                       (%i - 5)  (%i + 239)
>(%o3)             - 2 %i result = log(- --------------------)
>                                                          4
>                                       (%i - 239) (%i + 5)
>(%i4) exp(lhs(%))=exp(rhs(%));
>                                              4
>                    - 2 %i result     (%i - 5)  (%i + 239)
>(%o4)              %e              = - --------------------
>                                                         4
>                                      (%i - 239) (%i + 5)
>(%i5) lhs(%)=rectform(rhs(%));
>                             - 2 %i result
>(%o5)                       %e              = - %i
>(%i6) log(lhs(%))=log(rhs(%));
>(%o6)                      - 2 %i result = log(- %i)
>(%i7) rectform(lhs(%))=rectform(rhs(%));
>                                            %i %pi
>(%o7)                      - 2 %i result = - ------
>                                              2
>(%i8) solve(%,result);
>                                         %pi
>(%o8)                           [result = ---]
>                                          4
>
>This example shows why rectform, log, exp, logcontract, logarc, etc., should distribute over "=".
>
>At 11:20 AM 2/20/2012, Stavros Macrakis wrote:
>>Consider the expression 4*atan(1/5)-atan(1/239) (Machin's formula).
>>
>>How can we use Maxima to simplify it to %pi/4?
>>
>>Well, here's one approach:
>>
>>atan(trigexpand(trigexpand(tan(ex))))
>>
>>And here's another way that doesn't depend on trig identities:
>>
>>(%i1) ex:4*atan(1/5)-atan(1/239);
>>(%o1) 4*atan(1/5)-atan(1/239)
>>(%i2) llex: logcontract(logarc(ex));
>>(%o2) %i*log(-(%i-5)^4*(%i+239)/((%i-239)*(%i+5)^4))/2
>>(%i3) rectform(llex);
>>(%o3) (atan(sin(4*atan(1/5))/cos(4*atan(1/5)))-atan(sin(4*(%pi-atan(1/5)))/cos(4*(%pi-atan(1/5))))-2*atan(1/239))/2
>>        <<< oops, not so helpful
>>(%i4) scanmap(rectform,llex,bottomup);
>>        <<< but reorganizing the rectform calculation gives a better result
>>        <<< makes me think that rectform could be improved...
>>(%o4) %pi/4
>>
>>Are any of these techniques packaged into some analog of trigsimp?
>>
>>                -s