Maxima supports integers of arbitrary size, limited only by machine
memory. Of course, some calculations will be slow on large integers:
factor(10^100 - 9 ^ 100) =>
11*19*31*41*101*181*241*401*761*1321*1901*3701*7541*259001*1912601*3438451*1363017301*48873277451
*875145743369801*4023238425162001
(takes 2.6 secs on my machine -- times go up rapidly with larger numbers)
though others will be fast:
mod(10^1000000,23456) => 9504 (0.4 sec)
Maxima is perfectly happy to calculate (say) 10^1000000, but of course
the printout is rather long....
Maxima can also calculate with arbitrary-precision decimals -- though
you must specify the precision in advance:
fpprec: 200$ <<< set precision to 200 decimal digits
bfloat(sqrt(2)) =>
1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358314132226659275055927557999505011527820605715b0
-s
On Mon, Feb 27, 2012 at 10:52, Roman Plch <plch at math.muni.cz> wrote:
> Hi,
>
> what is the biggest integer we can use in Maxima (on 32 bit systems)?
> How Maxima store integers?
>
> Thanks in advance.
>
> Best regards
>
> Roman
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima