Integrals



The function specint (Laplace transform) can do this:

 (%i37) p: fullratsimp(c*f/pdenom);
 (%o37) (c^a*s^(-a-1)*%e^(-c/s))/(a*gamma(a))

 (%i38) specint(%,c);
 (%o38) gamma(a+1)/(a*gamma(a))

To view the user documentation for specint, enter "? specint".  Maxima automatically simplifies a^(s) * a^(-s) to 1, but it seems that
Maple does not. Why integrate doesn't automatically dispatch specint is a mystery.

Welcome to Maxima

--Barton

________________________________________
From: maxima-bounces at math.utexas.edu [maxima-bounces at math.utexas.edu] on behalf of Lindsay Keegan [keeganlt at mcmaster.ca]
Sent: Monday, June 11, 2012 14:04
To: maxima at math.utexas.edu
Subject: Integrals

When I try to do the following integral:

assume(a>1);
declare(a, noninteger);
assume(s>0);
assume(H>0);

f: c^(a-1)/s^a*(exp(-c/s))/gamma(a);
pdenom: minfactorial(makefact(fullratsimp(integrate(c*f, c, 0, inf))));
p: fullratsimp(c*f/pdenom);

integrate(c*p*H/(c+H), c, 0, inf);


I get

(%i13)                    integrate(-----, c, 0, inf)
                                    H + c
                                   inf
                                  /     a + 1   - c/s
                        - a - 1   [    c      %e
                       s        H I    -------------- dc
                                  ]        H + c
                                  /
                                   0
(%o13)                 ---------------------------------
                                  a gamma(a)


However, when I do it in Maple it works and I get:

 g0 := int(gd, x=0..infinity);
                                      GAMMA(a~)
                          g0 := ----------------------
                                     a~                        (-a~)
                                s~   gamma(a~) s~


How can I get Maxima to do the integral?

Thank you,
Lindsay



Lindsay Keegan
PhD Candidate
Theoretical Biology Lab
Department of Biology
McMaster University

_______________________________________________
Maxima mailing list
Maxima at math.utexas.edu
http://www.math.utexas.edu/mailman/listinfo/maxima