Repost: algsys with partial solution



Hi list,

this is a re-post, which I sent on the 8th October,
and got no answer, so I'll try it again.

----------------------------------------------------
here is the next one,
I have a polynomial system of equation

eqs : [...];
algsys(eqs,listofvars(eqs));

algsys returns 4 solutions

Now if I additionally have extra equations
for some variables with rhs already a number

eqs : [...];
psol : [...];
eqs : subst(psol,eqs);
algsys(eqs,listofvars(eqs));

algsys returns 5 solutions.

So algsys gives for the specialized system
more solutions than for the unspecialized one. Bug?

Regards
Andre

P.S.
Test and output files are attached.
With sbcl, maxima-5.27.0, athon64 2MHz
it takes approximately 7 minutes.
----------------------------------------------------




-------------- next part --------------
display2d : false;

eqs : [
zz2[[0,4],[4,0]]-zz12[[0,4],[4,0]] = 0,(zz12[[0,4],[4,0]]-zz2[[0,4],[4,0]])*zz12[[4,0],[3,0]]+zz2[[0,4],[3,0]]-zz12[[0,4],[3,0]] = 0,(zz2[[0,4],[4,0]]-zz12[[0,4],[4,0]])*zz12[[3,0],[2,0]]*zz12[[4,0],[3,0]]+(zz12[[0,4],[4,0]]-zz2[[0,4],[4,0]])*zz12[[4,0],[2,0]]+(zz12[[0,4],[3,0]]-zz2[[0,4],[3,0]])*zz12[[3,0],[2,0]]+zz2[[0,4],[2,0]]-zz12[[0,4],[2,0]] = 0,((zz12[[0,4],[4,0]]-zz2[[0,4],[4,0]])*zz12[[2,0],[1,0]]*zz12[[3,0],[2,0]]+(zz2[[0,4],[4,0]]-zz12[[0,4],[4,0]])*zz12[[3,0],[1,0]])*zz12[[4,0],[3,0]]+(zz2[[0,4],[4,0]]-zz12[[0,4],[4,0]])*zz12[[2,0],[1,0]]*zz12[[4,0],[2,0]]+(zz12[[0,4],[4,0]]-zz2[[0,4],[4,0]])*zz12[[4,0],[1,0]]+(zz2[[0,4],[3,0]]-zz12[[0,4],[3,0]])*zz12[[2,0],[1,0]]*zz12[[3,0],[2,0]]+(zz12[[0,4],[3,0]]-zz2[[0,4],[3,0]])*zz12[[3,0],[1,0]]+(zz12[[0,4],[2,0]]-zz2[[0,4],[2,0]])*zz12[[2,0],[1,0]]+zz2[[0,4],[1,0]]-zz12[[0,4],[1,0]] = 0,
(((zz2[[0,4],[4,0]]-zz12[[0,4],[4,0]])*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]+(zz12[[0,4],[4,0]]-zz2[[0,4],[4,0]])*zz12[[2,0],[0,0]])*zz12[[3,0],[2,0]]+(zz12[[0,4],[4,0]]-zz2[[0,4],[4,0]])*zz12[[1,0],[0,0]]*zz12[[3,0],[1,0]]+(zz2[[0,4],[4,0]]-zz12[[0,4],[4,0]])*zz12[[3,0],[0,0]])*zz12[[4,0],[3,0]]+((zz12[[0,4],[4,0]]-zz2[[0,4],[4,0]])*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]+(zz2[[0,4],[4,0]]-zz12[[0,4],[4,0]])*zz12[[2,0],[0,0]])*zz12[[4,0],[2,0]]+(zz2[[0,4],[4,0]]-zz12[[0,4],[4,0]])*zz12[[1,0],[0,0]]*zz12[[4,0],[1,0]]+(zz12[[0,4],[4,0]]-zz2[[0,4],[4,0]])*zz12[[4,0],[0,0]]+((zz12[[0,4],[3,0]]-zz2[[0,4],[3,0]])*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]+(zz2[[0,4],[3,0]]-zz12[[0,4],[3,0]])*zz12[[2,0],[0,0]])*zz12[[3,0],[2,0]]+(zz2[[0,4],[3,0]]-zz12[[0,4],[3,0]])*zz12[[1,0],[0,0]]*zz12[[3,0],[1,0]]+(zz12[[0,4],[3,0]]-zz2[[0,4],[3,0]])*zz12[[3,0],[0,0]]+(zz2[[0,4],[2,0]]-zz12[[0,4],[2,0]])*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]+(zz12[[0,4],[2,0]]-zz2[[0,4],[2,0]])*zz12[[2,0],[0,0]]
+(zz12[[0,4],[1,0]]-zz2[[0,4],[1,0]])*zz12[[1,0],[0,0]]+zz2[[0,4],[0,0]]-zz12[[0,4],[0,0]]
= 0,zz2[[1,3],[4,0]]-zz12[[1,3],[4,0]] = 0,-((2*zz2[[1,3],[4,0]]-2*zz12[[1,3],[4,0]])*zz12[[4,0],[3,0]]-2*zz2[[1,3],[3,0]]+2*zz12[[1,3],[3,0]]-3*zz12[[0,3],[3,0]])/2 = 0,((2*zz2[[1,3],[4,0]]-2*zz12[[1,3],[4,0]])*zz12[[3,0],[2,0]]*zz12[[4,0],[3,0]]+(2*zz12[[1,3],[4,0]]-2*zz2[[1,3],[4,0]])*zz12[[4,0],[2,0]]+(-2*zz2[[1,3],[3,0]]+2*zz12[[1,3],[3,0]]-3*zz12[[0,3],[3,0]])*zz12[[3,0],[2,0]]+2*zz2[[1,3],[2,0]]-2*zz12[[1,3],[2,0]]+3*zz12[[0,3],[2,0]])/2 = 0,
-(((2*zz2[[1,3],[4,0]]-2*zz12[[1,3],[4,0]])*zz12[[2,0],[1,0]]*zz12[[3,0],[2,0]]+(2*zz12[[1,3],[4,0]]-2*zz2[[1,3],[4,0]])*zz12[[3,0],[1,0]])*zz12[[4,0],[3,0]]+(2*zz12[[1,3],[4,0]]-2*zz2[[1,3],[4,0]])*zz12[[2,0],[1,0]]*zz12[[4,0],[2,0]]+(2*zz2[[1,3],[4,0]]-2*zz12[[1,3],[4,0]])*zz12[[4,0],[1,0]]+(-2*zz2[[1,3],[3,0]]+2*zz12[[1,3],[3,0]]-3*zz12[[0,3],[3,0]])*zz12[[2,0],[1,0]]*zz12[[3,0],[2,0]]+(2*zz2[[1,3],[3,0]]-2*zz12[[1,3],[3,0]]+3*zz12[[0,3],[3,0]])*zz12[[3,0],[1,0]]+(2*zz2[[1,3],[2,0]]-2*zz12[[1,3],[2,0]]+3*zz12[[0,3],[2,0]])*zz12[[2,0],[1,0]]-2*zz2[[1,3],[1,0]]+2*zz12[[1,3],[1,0]]-3*zz12[[0,3],[1,0]])/2 = 0,
((((2*zz12[[1,0],[0,0]]*zz2[[1,3],[4,0]]-2*zz12[[1,0],[0,0]]*zz12[[1,3],[4,0]])*zz12[[2,0],[1,0]]+(2*zz12[[1,3],[4,0]]-2*zz2[[1,3],[4,0]])*zz12[[2,0],[0,0]])*zz12[[3,0],[2,0]]+(2*zz12[[1,0],[0,0]]*zz12[[1,3],[4,0]]-2*zz12[[1,0],[0,0]]*zz2[[1,3],[4,0]])*zz12[[3,0],[1,0]]+(2*zz2[[1,3],[4,0]]-2*zz12[[1,3],[4,0]])*zz12[[3,0],[0,0]])*zz12[[4,0],[3,0]]+((2*zz12[[1,0],[0,0]]*zz12[[1,3],[4,0]]-2*zz12[[1,0],[0,0]]*zz2[[1,3],[4,0]])*zz12[[2,0],[1,0]]+(2*zz2[[1,3],[4,0]]-2*zz12[[1,3],[4,0]])*zz12[[2,0],[0,0]])*zz12[[4,0],[2,0]]+(2*zz12[[1,0],[0,0]]*zz2[[1,3],[4,0]]-2*zz12[[1,0],[0,0]]*zz12[[1,3],[4,0]])*zz12[[4,0],[1,0]]+(2*zz12[[1,3],[4,0]]-2*zz2[[1,3],[4,0]])*zz12[[4,0],[0,0]]+((-2*zz12[[1,0],[0,0]]*zz2[[1,3],[3,0]]+2*zz12[[1,0],[0,0]]*zz12[[1,3],[3,0]]-3*zz12[[0,3],[3,0]]*zz12[[1,0],[0,0]])*zz12[[2,0],[1,0]]+(2*zz2[[1,3],[3,0]]-2*zz12[[1,3],[3,0]]+3*zz12[[0,3],[3,0]])*zz12[[2,0],[0,0]])*zz12[[3,0],[2,0]]
+(2*zz12[[1,0],[0,0]]*zz2[[1,3],[3,0]]-2*zz12[[1,0],[0,0]]*zz12[[1,3],[3,0]]+3*zz12[[0,3],[3,0]]*zz12[[1,0],[0,0]])*zz12[[3,0],[1,0]]+(-2*zz2[[1,3],[3,0]]+2*zz12[[1,3],[3,0]]-3*zz12[[0,3],[3,0]])*zz12[[3,0],[0,0]]+(2*zz12[[1,0],[0,0]]*zz2[[1,3],[2,0]]-2*zz12[[1,0],[0,0]]*zz12[[1,3],[2,0]]+3*zz12[[0,3],[2,0]]*zz12[[1,0],[0,0]])*zz12[[2,0],[1,0]]+(-2*zz2[[1,3],[2,0]]+2*zz12[[1,3],[2,0]]-3*zz12[[0,3],[2,0]])*zz12[[2,0],[0,0]]-2*zz12[[1,0],[0,0]]*zz2[[1,3],[1,0]]+2*zz12[[1,0],[0,0]]*zz12[[1,3],[1,0]]+2*zz2[[1,3],[0,0]]-2*zz12[[1,3],[0,0]]-3*zz12[[0,3],[1,0]]*zz12[[1,0],[0,0]]+3*zz12[[0,3],[0,0]])
/2
= 0,zz2[[2,2],[4,0]]-zz12[[2,2],[4,0]] = 0,-((35*zz2[[2,2],[4,0]]-35*zz12[[2,2],[4,0]])*zz12[[4,0],[3,0]]-35*zz2[[2,2],[3,0]]+35*zz12[[2,2],[3,0]]-48*zz12[[1,2],[3,0]])/35 = 0,((35*zz2[[2,2],[4,0]]-35*zz12[[2,2],[4,0]])*zz12[[3,0],[2,0]]*zz12[[4,0],[3,0]]+(35*zz12[[2,2],[4,0]]-35*zz2[[2,2],[4,0]])*zz12[[4,0],[2,0]]+(-35*zz2[[2,2],[3,0]]+35*zz12[[2,2],[3,0]]-48*zz12[[1,2],[3,0]])*zz12[[3,0],[2,0]]+35*zz2[[2,2],[2,0]]-35*zz12[[2,2],[2,0]]+48*zz12[[1,2],[2,0]])/35 = 0,
-(((35*zz12[[2,0],[1,0]]*zz2[[2,2],[4,0]]-35*zz12[[2,0],[1,0]]*zz12[[2,2],[4,0]])*zz12[[3,0],[2,0]]+(35*zz12[[2,2],[4,0]]-35*zz2[[2,2],[4,0]])*zz12[[3,0],[1,0]])*zz12[[4,0],[3,0]]+(35*zz12[[2,0],[1,0]]*zz12[[2,2],[4,0]]-35*zz12[[2,0],[1,0]]*zz2[[2,2],[4,0]])*zz12[[4,0],[2,0]]+(35*zz2[[2,2],[4,0]]-35*zz12[[2,2],[4,0]])*zz12[[4,0],[1,0]]+(-35*zz12[[2,0],[1,0]]*zz2[[2,2],[3,0]]+35*zz12[[2,0],[1,0]]*zz12[[2,2],[3,0]]-48*zz12[[1,2],[3,0]]*zz12[[2,0],[1,0]])*zz12[[3,0],[2,0]]+(35*zz2[[2,2],[3,0]]-35*zz12[[2,2],[3,0]]+48*zz12[[1,2],[3,0]])*zz12[[3,0],[1,0]]+35*zz12[[2,0],[1,0]]*zz2[[2,2],[2,0]]-35*zz12[[2,0],[1,0]]*zz12[[2,2],[2,0]]-35*zz2[[2,2],[1,0]]+35*zz12[[2,2],[1,0]]+48*zz12[[1,2],[2,0]]*zz12[[2,0],[1,0]]-48*zz12[[1,2],[1,0]])/35 = 0,
((((35*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]-35*zz12[[2,0],[0,0]])*zz2[[2,2],[4,0]]+(35*zz12[[2,0],[0,0]]-35*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]])*zz12[[2,2],[4,0]])*zz12[[3,0],[2,0]]+(35*zz12[[1,0],[0,0]]*zz12[[2,2],[4,0]]-35*zz12[[1,0],[0,0]]*zz2[[2,2],[4,0]])*zz12[[3,0],[1,0]]+(35*zz2[[2,2],[4,0]]-35*zz12[[2,2],[4,0]])*zz12[[3,0],[0,0]])*zz12[[4,0],[3,0]]+((35*zz12[[2,0],[0,0]]-35*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]])*zz2[[2,2],[4,0]]+(35*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]-35*zz12[[2,0],[0,0]])*zz12[[2,2],[4,0]])*zz12[[4,0],[2,0]]+(35*zz12[[1,0],[0,0]]*zz2[[2,2],[4,0]]-35*zz12[[1,0],[0,0]]*zz12[[2,2],[4,0]])*zz12[[4,0],[1,0]]+(35*zz12[[2,2],[4,0]]-35*zz2[[2,2],[4,0]])*zz12[[4,0],[0,0]]+((35*zz12[[2,0],[0,0]]-35*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]])*zz2[[2,2],[3,0]]+(35*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]-35*zz12[[2,0],[0,0]])*zz12[[2,2],[3,0]]-48*zz12[[1,0],[0,0]]*zz12[[1,2],[3,0]]*zz12[[2,0],[1,0]]+48*zz12[[1,2],[3,0]]*zz12[[2,0],[0,0]])*zz12[[3,0],[2,0]]
+(35*zz12[[1,0],[0,0]]*zz2[[2,2],[3,0]]-35*zz12[[1,0],[0,0]]*zz12[[2,2],[3,0]]+48*zz12[[1,0],[0,0]]*zz12[[1,2],[3,0]])*zz12[[3,0],[1,0]]+(-35*zz2[[2,2],[3,0]]+35*zz12[[2,2],[3,0]]-48*zz12[[1,2],[3,0]])*zz12[[3,0],[0,0]]+(35*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]-35*zz12[[2,0],[0,0]])*zz2[[2,2],[2,0]]+(35*zz12[[2,0],[0,0]]-35*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]])*zz12[[2,2],[2,0]]-35*zz12[[1,0],[0,0]]*zz2[[2,2],[1,0]]+35*zz12[[1,0],[0,0]]*zz12[[2,2],[1,0]]+35*zz2[[2,2],[0,0]]-35*zz12[[2,2],[0,0]]+48*zz12[[1,0],[0,0]]*zz12[[1,2],[2,0]]*zz12[[2,0],[1,0]]-48*zz12[[1,2],[2,0]]*zz12[[2,0],[0,0]]-48*zz12[[1,0],[0,0]]*zz12[[1,2],[1,0]]
+48*zz12[[1,2],[0,0]])
/35
= 0,zz2[[3,1],[4,0]]-zz12[[3,1],[4,0]] = 0,-((5*zz2[[3,1],[4,0]]-5*zz12[[3,1],[4,0]])*zz12[[4,0],[3,0]]-5*zz2[[3,1],[3,0]]+5*zz12[[3,1],[3,0]]-6*zz12[[2,1],[3,0]])/5 = 0,((5*zz12[[3,0],[2,0]]*zz2[[3,1],[4,0]]-5*zz12[[3,0],[2,0]]*zz12[[3,1],[4,0]])*zz12[[4,0],[3,0]]+(5*zz12[[3,1],[4,0]]-5*zz2[[3,1],[4,0]])*zz12[[4,0],[2,0]]-5*zz12[[3,0],[2,0]]*zz2[[3,1],[3,0]]+5*zz12[[3,0],[2,0]]*zz12[[3,1],[3,0]]+5*zz2[[3,1],[2,0]]-5*zz12[[3,1],[2,0]]-6*zz12[[2,1],[3,0]]*zz12[[3,0],[2,0]]+6*zz12[[2,1],[2,0]])/5 = 0,
-(((5*zz12[[2,0],[1,0]]*zz12[[3,0],[2,0]]-5*zz12[[3,0],[1,0]])*zz2[[3,1],[4,0]]+(5*zz12[[3,0],[1,0]]-5*zz12[[2,0],[1,0]]*zz12[[3,0],[2,0]])*zz12[[3,1],[4,0]])*zz12[[4,0],[3,0]]+(5*zz12[[2,0],[1,0]]*zz12[[3,1],[4,0]]-5*zz12[[2,0],[1,0]]*zz2[[3,1],[4,0]])*zz12[[4,0],[2,0]]+(5*zz2[[3,1],[4,0]]-5*zz12[[3,1],[4,0]])*zz12[[4,0],[1,0]]+(5*zz12[[3,0],[1,0]]-5*zz12[[2,0],[1,0]]*zz12[[3,0],[2,0]])*zz2[[3,1],[3,0]]+(5*zz12[[2,0],[1,0]]*zz12[[3,0],[2,0]]-5*zz12[[3,0],[1,0]])*zz12[[3,1],[3,0]]+5*zz12[[2,0],[1,0]]*zz2[[3,1],[2,0]]-5*zz12[[2,0],[1,0]]*zz12[[3,1],[2,0]]-5*zz2[[3,1],[1,0]]+5*zz12[[3,1],[1,0]]-6*zz12[[2,0],[1,0]]*zz12[[2,1],[3,0]]*zz12[[3,0],[2,0]]+6*zz12[[2,1],[3,0]]*zz12[[3,0],[1,0]]+6*zz12[[2,0],[1,0]]*zz12[[2,1],[2,0]]-6*zz12[[2,1],[1,0]])/5 = 0,
((((5*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]-5*zz12[[2,0],[0,0]])*zz12[[3,0],[2,0]]-5*zz12[[1,0],[0,0]]*zz12[[3,0],[1,0]]+5*zz12[[3,0],[0,0]])*zz2[[3,1],[4,0]]+((5*zz12[[2,0],[0,0]]-5*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]])*zz12[[3,0],[2,0]]+5*zz12[[1,0],[0,0]]*zz12[[3,0],[1,0]]-5*zz12[[3,0],[0,0]])*zz12[[3,1],[4,0]])*zz12[[4,0],[3,0]]+((5*zz12[[2,0],[0,0]]-5*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]])*zz2[[3,1],[4,0]]+(5*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]-5*zz12[[2,0],[0,0]])*zz12[[3,1],[4,0]])*zz12[[4,0],[2,0]]+(5*zz12[[1,0],[0,0]]*zz2[[3,1],[4,0]]-5*zz12[[1,0],[0,0]]*zz12[[3,1],[4,0]])*zz12[[4,0],[1,0]]+(5*zz12[[3,1],[4,0]]-5*zz2[[3,1],[4,0]])*zz12[[4,0],[0,0]]+((5*zz12[[2,0],[0,0]]-5*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]])*zz12[[3,0],[2,0]]+5*zz12[[1,0],[0,0]]*zz12[[3,0],[1,0]]-5*zz12[[3,0],[0,0]])*zz2[[3,1],[3,0]]+((5*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]-5*zz12[[2,0],[0,0]])*zz12[[3,0],[2,0]]-5*zz12[[1,0],[0,0]]*zz12[[3,0],[1,0]]+5*zz12[[3,0],[0,0]])*zz12[[3,1],[3,0]]
+(5*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]-5*zz12[[2,0],[0,0]])*zz2[[3,1],[2,0]]+(5*zz12[[2,0],[0,0]]-5*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]])*zz12[[3,1],[2,0]]-5*zz12[[1,0],[0,0]]*zz2[[3,1],[1,0]]+5*zz12[[1,0],[0,0]]*zz12[[3,1],[1,0]]+5*zz2[[3,1],[0,0]]-5*zz12[[3,1],[0,0]]+(6*zz12[[2,0],[0,0]]-6*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]])*zz12[[2,1],[3,0]]*zz12[[3,0],[2,0]]+6*zz12[[1,0],[0,0]]*zz12[[2,1],[3,0]]*zz12[[3,0],[1,0]]-6*zz12[[2,1],[3,0]]*zz12[[3,0],[0,0]]+(6*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]-6*zz12[[2,0],[0,0]])*zz12[[2,1],[2,0]]-6*zz12[[1,0],[0,0]]*zz12[[2,1],[1,0]]+6*zz12[[2,1],[0,0]])
/5
= 0,-zz12[[3,0],[2,0]]*zz2[[4,0],[3,0]]+zz12[[3,0],[2,0]]*zz12[[4,0],[3,0]]+zz2[[4,0],[2,0]]-zz12[[4,0],[2,0]] = 0,(zz12[[2,0],[1,0]]*zz12[[3,0],[2,0]]-zz12[[3,0],[1,0]])*zz2[[4,0],[3,0]]+(zz12[[3,0],[1,0]]-zz12[[2,0],[1,0]]*zz12[[3,0],[2,0]])*zz12[[4,0],[3,0]]-zz12[[2,0],[1,0]]*zz2[[4,0],[2,0]]+zz12[[2,0],[1,0]]*zz12[[4,0],[2,0]]+zz2[[4,0],[1,0]]-zz12[[4,0],[1,0]] = 0,((zz12[[2,0],[0,0]]-zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]])*zz12[[3,0],[2,0]]+zz12[[1,0],[0,0]]*zz12[[3,0],[1,0]]-zz12[[3,0],[0,0]])*zz2[[4,0],[3,0]]+((zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]-zz12[[2,0],[0,0]])*zz12[[3,0],[2,0]]-zz12[[1,0],[0,0]]*zz12[[3,0],[1,0]]+zz12[[3,0],[0,0]])*zz12[[4,0],[3,0]]+(zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]-zz12[[2,0],[0,0]])*zz2[[4,0],[2,0]]+(zz12[[2,0],[0,0]]-zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]])*zz12[[4,0],[2,0]]-zz12[[1,0],[0,0]]*zz2[[4,0],[1,0]]+zz12[[1,0],[0,0]]*zz12[[4,0],[1,0]]+zz2[[4,0],[0,0]]-zz12[[4,0],[0,0]] = 0,zz2[[0,3],[3,0]]-zz12[[0,3],[3,0]] = 0,
(zz12[[0,3],[3,0]]-zz2[[0,3],[3,0]])*zz12[[3,0],[2,0]]+zz2[[0,3],[2,0]]-zz12[[0,3],[2,0]] = 0,(zz2[[0,3],[3,0]]-zz12[[0,3],[3,0]])*zz12[[2,0],[1,0]]*zz12[[3,0],[2,0]]+(zz12[[0,3],[3,0]]-zz2[[0,3],[3,0]])*zz12[[3,0],[1,0]]+(zz12[[0,3],[2,0]]-zz2[[0,3],[2,0]])*zz12[[2,0],[1,0]]+zz2[[0,3],[1,0]]-zz12[[0,3],[1,0]] = 0,((zz12[[0,3],[3,0]]-zz2[[0,3],[3,0]])*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]+(zz2[[0,3],[3,0]]-zz12[[0,3],[3,0]])*zz12[[2,0],[0,0]])*zz12[[3,0],[2,0]]+(zz2[[0,3],[3,0]]-zz12[[0,3],[3,0]])*zz12[[1,0],[0,0]]*zz12[[3,0],[1,0]]+(zz12[[0,3],[3,0]]-zz2[[0,3],[3,0]])*zz12[[3,0],[0,0]]+(zz2[[0,3],[2,0]]-zz12[[0,3],[2,0]])*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]+(zz12[[0,3],[2,0]]-zz2[[0,3],[2,0]])*zz12[[2,0],[0,0]]+(zz12[[0,3],[1,0]]-zz2[[0,3],[1,0]])*zz12[[1,0],[0,0]]+zz2[[0,3],[0,0]]-zz12[[0,3],[0,0]] = 0,zz2[[1,2],[3,0]]-zz12[[1,2],[3,0]] = 0,-((4*zz2[[1,2],[3,0]]-4*zz12[[1,2],[3,0]])*zz12[[3,0],[2,0]]-4*zz2[[1,2],[2,0]]+4*zz12[[1,2],[2,0]]-7*zz12[[0,2],[2,0]])/4 = 0,
((4*zz2[[1,2],[3,0]]-4*zz12[[1,2],[3,0]])*zz12[[2,0],[1,0]]*zz12[[3,0],[2,0]]+(4*zz12[[1,2],[3,0]]-4*zz2[[1,2],[3,0]])*zz12[[3,0],[1,0]]+(-4*zz2[[1,2],[2,0]]+4*zz12[[1,2],[2,0]]-7*zz12[[0,2],[2,0]])*zz12[[2,0],[1,0]]+4*zz2[[1,2],[1,0]]-4*zz12[[1,2],[1,0]]+7*zz12[[0,2],[1,0]])/4 = 0,
-(((4*zz12[[1,0],[0,0]]*zz2[[1,2],[3,0]]-4*zz12[[1,0],[0,0]]*zz12[[1,2],[3,0]])*zz12[[2,0],[1,0]]+(4*zz12[[1,2],[3,0]]-4*zz2[[1,2],[3,0]])*zz12[[2,0],[0,0]])*zz12[[3,0],[2,0]]+(4*zz12[[1,0],[0,0]]*zz12[[1,2],[3,0]]-4*zz12[[1,0],[0,0]]*zz2[[1,2],[3,0]])*zz12[[3,0],[1,0]]+(4*zz2[[1,2],[3,0]]-4*zz12[[1,2],[3,0]])*zz12[[3,0],[0,0]]+(-4*zz12[[1,0],[0,0]]*zz2[[1,2],[2,0]]+4*zz12[[1,0],[0,0]]*zz12[[1,2],[2,0]]-7*zz12[[0,2],[2,0]]*zz12[[1,0],[0,0]])*zz12[[2,0],[1,0]]+(4*zz2[[1,2],[2,0]]-4*zz12[[1,2],[2,0]]+7*zz12[[0,2],[2,0]])*zz12[[2,0],[0,0]]+4*zz12[[1,0],[0,0]]*zz2[[1,2],[1,0]]-4*zz12[[1,0],[0,0]]*zz12[[1,2],[1,0]]-4*zz2[[1,2],[0,0]]+4*zz12[[1,2],[0,0]]+7*zz12[[0,2],[1,0]]*zz12[[1,0],[0,0]]-7*zz12[[0,2],[0,0]])/4 = 0,zz2[[2,1],[3,0]]-zz12[[2,1],[3,0]] = 0,-((5*zz2[[2,1],[3,0]]-5*zz12[[2,1],[3,0]])*zz12[[3,0],[2,0]]-5*zz2[[2,1],[2,0]]+5*zz12[[2,1],[2,0]]-7*zz12[[1,1],[2,0]])/5 = 0,
((5*zz12[[2,0],[1,0]]*zz2[[2,1],[3,0]]-5*zz12[[2,0],[1,0]]*zz12[[2,1],[3,0]])*zz12[[3,0],[2,0]]+(5*zz12[[2,1],[3,0]]-5*zz2[[2,1],[3,0]])*zz12[[3,0],[1,0]]-5*zz12[[2,0],[1,0]]*zz2[[2,1],[2,0]]+5*zz12[[2,0],[1,0]]*zz12[[2,1],[2,0]]+5*zz2[[2,1],[1,0]]-5*zz12[[2,1],[1,0]]-7*zz12[[1,1],[2,0]]*zz12[[2,0],[1,0]]+7*zz12[[1,1],[1,0]])/5 = 0,
-(((5*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]-5*zz12[[2,0],[0,0]])*zz2[[2,1],[3,0]]+(5*zz12[[2,0],[0,0]]-5*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]])*zz12[[2,1],[3,0]])*zz12[[3,0],[2,0]]+(5*zz12[[1,0],[0,0]]*zz12[[2,1],[3,0]]-5*zz12[[1,0],[0,0]]*zz2[[2,1],[3,0]])*zz12[[3,0],[1,0]]+(5*zz2[[2,1],[3,0]]-5*zz12[[2,1],[3,0]])*zz12[[3,0],[0,0]]+(5*zz12[[2,0],[0,0]]-5*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]])*zz2[[2,1],[2,0]]+(5*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]-5*zz12[[2,0],[0,0]])*zz12[[2,1],[2,0]]+5*zz12[[1,0],[0,0]]*zz2[[2,1],[1,0]]-5*zz12[[1,0],[0,0]]*zz12[[2,1],[1,0]]-5*zz2[[2,1],[0,0]]+5*zz12[[2,1],[0,0]]-7*zz12[[1,0],[0,0]]*zz12[[1,1],[2,0]]*zz12[[2,0],[1,0]]+7*zz12[[1,1],[2,0]]*zz12[[2,0],[0,0]]+7*zz12[[1,0],[0,0]]*zz12[[1,1],[1,0]]-7*zz12[[1,1],[0,0]])/5 = 0,-zz12[[2,0],[1,0]]*zz2[[3,0],[2,0]]+zz12[[2,0],[1,0]]*zz12[[3,0],[2,0]]+zz2[[3,0],[1,0]]-zz12[[3,0],[1,0]] = 0,
(zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]-zz12[[2,0],[0,0]])*zz2[[3,0],[2,0]]+(zz12[[2,0],[0,0]]-zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]])*zz12[[3,0],[2,0]]-zz12[[1,0],[0,0]]*zz2[[3,0],[1,0]]+zz12[[1,0],[0,0]]*zz12[[3,0],[1,0]]+zz2[[3,0],[0,0]]-zz12[[3,0],[0,0]] = 0,zz2[[0,2],[2,0]]-zz12[[0,2],[2,0]] = 0,(zz12[[0,2],[2,0]]-zz2[[0,2],[2,0]])*zz12[[2,0],[1,0]]+zz2[[0,2],[1,0]]-zz12[[0,2],[1,0]] = 0,(zz2[[0,2],[2,0]]-zz12[[0,2],[2,0]])*zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]+(zz12[[0,2],[2,0]]-zz2[[0,2],[2,0]])*zz12[[2,0],[0,0]]+(zz12[[0,2],[1,0]]-zz2[[0,2],[1,0]])*zz12[[1,0],[0,0]]+zz2[[0,2],[0,0]]-zz12[[0,2],[0,0]] = 0,zz2[[1,1],[2,0]]-zz12[[1,1],[2,0]] = 0,-((2*zz2[[1,1],[2,0]]-2*zz12[[1,1],[2,0]])*zz12[[2,0],[1,0]]-2*zz2[[1,1],[1,0]]+2*zz12[[1,1],[1,0]]-5*zz12[[0,1],[1,0]])/2 = 0,
((2*zz12[[1,0],[0,0]]*zz2[[1,1],[2,0]]-2*zz12[[1,0],[0,0]]*zz12[[1,1],[2,0]])*zz12[[2,0],[1,0]]+(2*zz12[[1,1],[2,0]]-2*zz2[[1,1],[2,0]])*zz12[[2,0],[0,0]]-2*zz12[[1,0],[0,0]]*zz2[[1,1],[1,0]]+2*zz12[[1,0],[0,0]]*zz12[[1,1],[1,0]]+2*zz2[[1,1],[0,0]]-2*zz12[[1,1],[0,0]]-5*zz12[[0,1],[1,0]]*zz12[[1,0],[0,0]]+5*zz12[[0,1],[0,0]])/2 = 0,-zz12[[1,0],[0,0]]*zz2[[2,0],[1,0]]+zz12[[1,0],[0,0]]*zz12[[2,0],[1,0]]+zz2[[2,0],[0,0]]-zz12[[2,0],[0,0]] = 0,zz2[[0,1],[1,0]]-zz12[[0,1],[1,0]] = 0,(zz12[[0,1],[1,0]]-zz2[[0,1],[1,0]])*zz12[[1,0],[0,0]]+zz2[[0,1],[0,0]]-zz12[[0,1],[0,0]] = 0,18*zz12[[0,4],[4,0]]/5 = 0,-(64*zz12[[0,4],[4,0]]-35*zz12[[0,4],[3,0]])/10 = 0,(126*zz12[[0,4],[4,0]]-90*zz12[[0,4],[3,0]]+50*zz12[[0,4],[2,0]])/15 = 0,-(288*zz12[[0,4],[4,0]]-225*zz12[[0,4],[3,0]]+160*zz12[[0,4],[2,0]]-90*zz12[[0,4],[1,0]])/30 = 0,5*zz12[[0,4],[4,0]]-4*zz12[[0,4],[3,0]]+3*zz12[[0,4],[2,0]]-2*zz12[[0,4],[1,0]]+zz12[[0,4],[0,0]] = 0,(126*zz12[[1,3],[4,0]]+15)/35 = 0,
-(896*zz12[[1,3],[4,0]]-490*zz12[[1,3],[3,0]]-185)/140 = 0,(126*zz12[[1,3],[4,0]]-90*zz12[[1,3],[3,0]]+50*zz12[[1,3],[2,0]]+15)/15 = 0,-(576*zz12[[1,3],[4,0]]-450*zz12[[1,3],[3,0]]+320*zz12[[1,3],[2,0]]-180*zz12[[1,3],[1,0]]+15)/60 = 0,5*zz12[[1,3],[4,0]]-4*zz12[[1,3],[3,0]]+3*zz12[[1,3],[2,0]]-2*zz12[[1,3],[1,0]]+zz12[[1,3],[0,0]] = 0,(126*zz12[[2,2],[4,0]]+144)/35 = 0,-(448*zz12[[2,2],[4,0]]-245*zz12[[2,2],[3,0]]-384)/70 = 0,(126*zz12[[2,2],[4,0]]-90*zz12[[2,2],[3,0]]+50*zz12[[2,2],[2,0]])/15 = 0,-(288*zz12[[2,2],[4,0]]-225*zz12[[2,2],[3,0]]+160*zz12[[2,2],[2,0]]-90*zz12[[2,2],[1,0]])/30 = 0,5*zz12[[2,2],[4,0]]-4*zz12[[2,2],[3,0]]+3*zz12[[2,2],[2,0]]-2*zz12[[2,2],[1,0]]+zz12[[2,2],[0,0]] = 0,(126*zz12[[3,1],[4,0]]-90*zz12[[3,1],[3,0]]+50*zz12[[3,1],[2,0]])/15 = 0,-(288*zz12[[3,1],[4,0]]-225*zz12[[3,1],[3,0]]+160*zz12[[3,1],[2,0]]-90*zz12[[3,1],[1,0]])/30 = 0,5*zz12[[3,1],[4,0]]-4*zz12[[3,1],[3,0]]+3*zz12[[3,1],[2,0]]-2*zz12[[3,1],[1,0]]+zz12[[3,1],[0,0]] = 0,
-(90*zz12[[4,0],[3,0]]-50*zz12[[4,0],[2,0]]-126)/15 = 0,(225*zz12[[4,0],[3,0]]-160*zz12[[4,0],[2,0]]+90*zz12[[4,0],[1,0]]-288)/30 = 0,-4*zz12[[4,0],[3,0]]+3*zz12[[4,0],[2,0]]-2*zz12[[4,0],[1,0]]+zz12[[4,0],[0,0]]+5 = 0,(21*zz12[[0,3],[3,0]]+1)/6 = 0,-(18*zz12[[0,3],[3,0]]-10*zz12[[0,3],[2,0]]-2)/3 = 0,(45*zz12[[0,3],[3,0]]-32*zz12[[0,3],[2,0]]+18*zz12[[0,3],[1,0]]+5)/6 = 0,-4*zz12[[0,3],[3,0]]+3*zz12[[0,3],[2,0]]-2*zz12[[0,3],[1,0]]+zz12[[0,3],[0,0]] = 0,(35*zz12[[1,2],[3,0]]+28)/10 = 0,-(90*zz12[[1,2],[3,0]]-50*zz12[[1,2],[2,0]]-63)/15 = 0,(45*zz12[[1,2],[3,0]]-32*zz12[[1,2],[2,0]]+18*zz12[[1,2],[1,0]])/6 = 0,-4*zz12[[1,2],[3,0]]+3*zz12[[1,2],[2,0]]-2*zz12[[1,2],[1,0]]+zz12[[1,2],[0,0]] = 0,(45*zz12[[2,1],[3,0]]-32*zz12[[2,1],[2,0]]+18*zz12[[2,1],[1,0]])/6 = 0,-4*zz12[[2,1],[3,0]]+3*zz12[[2,1],[2,0]]-2*zz12[[2,1],[1,0]]+zz12[[2,1],[0,0]] = 0,-(32*zz12[[3,0],[2,0]]-18*zz12[[3,0],[1,0]]-45)/6 = 0,3*zz12[[3,0],[2,0]]-2*zz12[[3,0],[1,0]]+zz12[[3,0],[0,0]]-4 = 0,
(10*zz12[[0,2],[2,0]]+4)/3 = 0,-(16*zz12[[0,2],[2,0]]-9*zz12[[0,2],[1,0]]-8)/3 = 0,3*zz12[[0,2],[2,0]]-2*zz12[[0,2],[1,0]]+zz12[[0,2],[0,0]] = 0,3*zz12[[1,1],[2,0]]-2*zz12[[1,1],[1,0]]+zz12[[1,1],[0,0]] = 0,-2*zz12[[2,0],[1,0]]+zz12[[2,0],[0,0]]+3 = 0,18*zz2[[0,4],[4,0]]/5 = 0,-(28*zz2[[0,4],[4,0]]-35*zz2[[0,4],[3,0]])/10 = 0,(168*zz2[[0,4],[4,0]]-75*zz2[[0,4],[3,0]]+100*zz2[[0,4],[2,0]])/30 = 0,-4*zz2[[0,4],[4,0]]+5*zz2[[0,4],[3,0]]-2*zz2[[0,4],[2,0]]+3*zz2[[0,4],[1,0]] = 0,zz2[[0,4],[4,0]]+zz2[[0,4],[3,0]]+zz2[[0,4],[2,0]]+zz2[[0,4],[1,0]]+zz2[[0,4],[0,0]] = 0,(126*zz2[[1,3],[4,0]]+15)/35 = 0,-(28*zz2[[1,3],[4,0]]-35*zz2[[1,3],[3,0]]-15)/10 = 0,(168*zz2[[1,3],[4,0]]-75*zz2[[1,3],[3,0]]+100*zz2[[1,3],[2,0]]+45)/30 = 0,-4*zz2[[1,3],[4,0]]+5*zz2[[1,3],[3,0]]-2*zz2[[1,3],[2,0]]+3*zz2[[1,3],[1,0]] = 0,zz2[[1,3],[4,0]]+zz2[[1,3],[3,0]]+zz2[[1,3],[2,0]]+zz2[[1,3],[1,0]]+zz2[[1,3],[0,0]] = 0,(126*zz2[[2,2],[4,0]]+144)/35 = 0,-(140*zz2[[2,2],[4,0]]-175*zz2[[2,2],[3,0]]-288)/50 = 0,
(168*zz2[[2,2],[4,0]]-75*zz2[[2,2],[3,0]]+100*zz2[[2,2],[2,0]])/30 = 0,-4*zz2[[2,2],[4,0]]+5*zz2[[2,2],[3,0]]-2*zz2[[2,2],[2,0]]+3*zz2[[2,2],[1,0]] = 0,zz2[[2,2],[4,0]]+zz2[[2,2],[3,0]]+zz2[[2,2],[2,0]]+zz2[[2,2],[1,0]]+zz2[[2,2],[0,0]] = 0,(168*zz2[[3,1],[4,0]]-75*zz2[[3,1],[3,0]]+100*zz2[[3,1],[2,0]])/30 = 0,-4*zz2[[3,1],[4,0]]+5*zz2[[3,1],[3,0]]-2*zz2[[3,1],[2,0]]+3*zz2[[3,1],[1,0]] = 0,zz2[[3,1],[4,0]]+zz2[[3,1],[3,0]]+zz2[[3,1],[2,0]]+zz2[[3,1],[1,0]]+zz2[[3,1],[0,0]] = 0,-(75*zz2[[4,0],[3,0]]-100*zz2[[4,0],[2,0]]-168)/30 = 0,5*zz2[[4,0],[3,0]]-2*zz2[[4,0],[2,0]]+3*zz2[[4,0],[1,0]]-4 = 0,zz2[[4,0],[3,0]]+zz2[[4,0],[2,0]]+zz2[[4,0],[1,0]]+zz2[[4,0],[0,0]]+1 = 0,(21*zz2[[0,3],[3,0]]+1)/6 = 0,-(15*zz2[[0,3],[3,0]]-20*zz2[[0,3],[2,0]]-5)/6 = 0,(15*zz2[[0,3],[3,0]]-6*zz2[[0,3],[2,0]]+9*zz2[[0,3],[1,0]]+5)/3 = 0,(3*zz2[[0,3],[3,0]]+3*zz2[[0,3],[2,0]]+3*zz2[[0,3],[1,0]]+3*zz2[[0,3],[0,0]]+5)/3 = 0,(35*zz2[[1,2],[3,0]]+28)/10 = 0,
-(15*zz2[[1,2],[3,0]]-20*zz2[[1,2],[2,0]]-28)/6 = 0,5*zz2[[1,2],[3,0]]-2*zz2[[1,2],[2,0]]+3*zz2[[1,2],[1,0]] = 0,zz2[[1,2],[3,0]]+zz2[[1,2],[2,0]]+zz2[[1,2],[1,0]]+zz2[[1,2],[0,0]] = 0,5*zz2[[2,1],[3,0]]-2*zz2[[2,1],[2,0]]+3*zz2[[2,1],[1,0]] = 0,zz2[[2,1],[3,0]]+zz2[[2,1],[2,0]]+zz2[[2,1],[1,0]]+zz2[[2,1],[0,0]] = 0,-2*zz2[[3,0],[2,0]]+3*zz2[[3,0],[1,0]]+5 = 0,zz2[[3,0],[2,0]]+zz2[[3,0],[1,0]]+zz2[[3,0],[0,0]]+1 = 0,(10*zz2[[0,2],[2,0]]+4)/3 = 0,-2*zz2[[0,2],[2,0]]+3*zz2[[0,2],[1,0]]+4 = 0,zz2[[0,2],[2,0]]+zz2[[0,2],[1,0]]+zz2[[0,2],[0,0]]+4 = 0,zz2[[1,1],[2,0]]+zz2[[1,1],[1,0]]+zz2[[1,1],[0,0]] = 0,zz2[[2,0],[1,0]]+zz2[[2,0],[0,0]]+1 = 0]$

print("--- with no partial solution");

length(eqs);
length(listofvars(eqs));

sols : algsys(eqs,listofvars(eqs))$

length(sols);
length(listofvars(sols));

print("--- with partial solution");

psol : [
zz12[[0,4],[4,0]] = 0, 
zz2[[0,4],[4,0]] = 0, 
zz12[[0,4],[3,0]] = 0, 
zz2[[0,4],[3,0]] = 0, 
zz12[[0,4],[2,0]] = 0, 
zz2[[0,4],[2,0]] = 0, 
zz12[[0,4],[1,0]] = 0, 
zz2[[0,4],[1,0]] = 0, 
zz12[[0,4],[0,0]] = 0, 
zz2[[0,4],[0,0]] = 0,
zz12[[4,0],[0,0]] = 0, 
zz12[[1,3],[4,0]] = -5/42, 
zz2[[1,3],[4,0]] = -5/42, 
zz12[[0,3],[3,0]] = -1/21, 
zz12[[1,3],[3,0]] = -25/42, 
zz2[[1,3],[3,0]] = -11/21, 
zz12[[0,3],[2,0]] = -2/7, 
zz12[[1,3],[2,0]] = -15/14, 
zz2[[1,3],[2,0]] = -9/14, 
zz12[[0,3],[1,0]] = -2/3, 
zz12[[1,3],[1,0]] = -5/7, 
zz2[[1,3],[1,0]] = 2/7, 
zz12[[0,3],[0,0]] = -2/3, 
zz12[[1,3],[0,0]] = 0, 
zz2[[1,3],[0,0]] = 1, 
zz12[[2,2],[4,0]] = -8/7, 
zz2[[2,2],[4,0]] = -8/7, 
zz12[[1,2],[3,0]] = -4/5, 
zz12[[2,2],[3,0]] = -128/35, 
zz2[[2,2],[3,0]] = -64/25, 
zz12[[1,2],[2,0]] = -27/10, 
zz12[[2,2],[2,0]] = -648/175, 
zz2[[2,2],[2,0]] = 0, 
zz12[[1,2],[1,0]] = -14/5, 
zz12[[2,2],[1,0]] = -192/175, 
zz2[[2,2],[1,0]] = 96/35, 
zz12[[1,2],[0,0]] = -7/10, 
zz12[[2,2],[0,0]] = 0, 
zz2[[2,2],[0,0]] = 24/25, 
zz12[[3,1],[0,0]] = 0, 
zz2[[0,3],[3,0]] = -1/21, 
zz2[[0,3],[2,0]] = -2/7, 
zz2[[0,3],[1,0]] = -2/3, 
zz2[[0,3],[0,0]] = -2/3, 
zz2[[1,2],[3,0]] = -4/5, 
zz12[[0,2],[2,0]] = -2/5, 
zz2[[1,2],[2,0]] = -2, 
zz12[[0,2],[1,0]] = -8/5, 
zz2[[1,2],[1,0]] = 0, 
zz12[[0,2],[0,0]] = -2, 
zz2[[1,2],[0,0]] = 14/5, 
zz2[[0,2],[2,0]] = -2/5, 
zz2[[0,2],[1,0]] = -8/5, 
zz2[[0,2],[0,0]] = -2 
]$

eqs : subst(psol,eqs)$

length(eqs);
length(listofvars(eqs));

sols : algsys(eqs,listofvars(eqs))$

length(sols);
length(listofvars(sols));


-------------- next part --------------
A non-text attachment was scrubbed...
Name: algsys-bug2.txt.gz
Type: application/x-gzip
Size: 3469 bytes
Desc: not available
URL: <http://www.math.utexas.edu/pipermail/maxima/attachments/20121109/3f0d596b/attachment-0001.bin>;
-------------- next part --------------
_______________________________________________
Maxima mailing list
Maxima at math.utexas.edu
http://www.math.utexas.edu/mailman/listinfo/maxima