Maxima 5.28.0-2 http://maxima.sourceforge.net
using Lisp GNU Common Lisp (GCL) GCL 2.6.8 (a.k.a. GCL)
/* This first erf only needs one bfloat followed by one expand: */
(%i1) bfloat(erf((sqrt(2)*%i+sqrt(2))/2));
(%o1) erf(5.0b-1*(1.414213562373095b0*%i+1.414213562373095b0))
(%i2) expand(%);
(%o2) 4.741476366409942b-1*%i+9.692642119442159b-1
/* but this erf needs bfloat, expand, bfloat to do the job: */
(%i3) bfloat(erf((sqrt(2)*%i-sqrt(2))/2));
(%o3) erf(5.0b-1*(1.414213562373095b0*%i-1.414213562373095b0))
(%i4) expand(%);
(%o4) 1.020646306179612b0*%i*sin(2.5b-1*%pi)
-3.50100287874768b-1*sin(2.5b-1*%pi)-3.50100287874768b-1*%i*cos(2.5b-1*%pi)
-1.020646306179612b0*cos(2.5b-1*%pi)
(%i5) bfloat(%);
(%o5) 4.741476366409942b-1*%i-9.692642119442159b-1
------------------------------------
Is this necessity to sometimes use two applications of bfloat to reduce an
erf expression to a x.xxby form a result of the definition of the erf
function
or a result of how the bigfloat package processes any expression?
Ted
p.s. I was originally trying to get
bfloat (integrate (sin(x)/sqrt(x), x, 0, 1)) reduced.