ratinterpol does not reproduce rational function



El jue, 27-12-2012 a las 02:23 +0100, andre maute escribi?:
> Hi list,
> 
> I have the following test case
> 
> --- ratinterpol.mac ------------
> display2d : false;
> load(interpol);
> h : makelist( [k,-2*(k+1)*(2*k+1)/(k*(k+2))], k,1,12);
> ratinterpol(h,2);
> --- ratinterpol.mac ------------
> 
> I get this unexpected behavior
> 
> --- output -------------
> $ maxima -b ratinterpol.mac
> Maxima 5.27.0 http://maxima.sourceforge.net
> using Lisp SBCL 1.0.57-1.fc17
> Distributed under the GNU Public License. See the file COPYING.
> Dedicated to the memory of William Schelter.
> The function bug_report() provides bug reporting information.
> STYLE-WARNING: redefining MAXIMA::$FILE_TYPE in DEFUN
> (%i1) batch(ratinterpol.mac)
> 
> read and interpret file: /home/user/ratinterpol.mac
> (%i2) display2d : false
> (%o2) false
> (%i3) load(interpol)
> (%o3) "/home/user/opt/maxima/share/maxima/5.27.0/share/numeric/interpol.mac"
> (%i4) h:makelist([k,(-2*(1+k)*(1+2*k))/(k*(2+k))],k,1,12)
> (%o4) 
> [[1,-4],[2,-15/4],[3,-56/15],[4,-15/4],[5,-132/35],[6,-91/24],[7,-80/21],[8,-153/40],[9,-380/99],[10,-77/20],[11,-552/143],[12,-325/84]]
> (%i5) ratinterpol(h,2)
> Unable to compute the LU factorization
> #0: 
> ratinterpol(tab=[[1,-4],[2,-15/4],[3,-56/15],[4,-15/4],[5,-132/35],[6,-91/24],[7,-80/21],[8,-153/40],[9,-380/99],[10...,r=2,select=[])(linearalgebra.mac 
> line 310)
>   -- an error. To debug this try: debugmode(true);
> (%o5) "/home/user/ratinterpol.mac"
> --- output -------------


Hello,

ratinterpol calls linsolve_by_lu to solve a linear system that gives the
values of the coefficients of the two polynomials in the rational
function.

In your example, the linear system built by ratinterpol is not
compatible. Maybe there is not any rational function with degree 2 in
the numerator such that it passes thru all the sample points. The degree
of the denominator is automatically calculated so that the there are as
many unknowns as equations.

Perhaps you can change the second argument to ratinterpol and try other
degrees for the numerator.

--
Mario