solving unknowns in matrix - in Maxima



   >From mailnull  Wed Jan  2 19:05:12 2013
   From: Rupert Swarbrick <rswarbrick at gmail.com>
   Date: Wed, 2 Jan 2013 18:53:12 +0000
   Content-Type: multipart/mixed;
	   boundary="===============0252527135626607063=="

   --===============0252527135626607063==
   Content-Type: multipart/signed; boundary="=-=-="; micalg=pgp-sha1;
	   protocol="application/pgp-signature"

   --=-=-=
   Content-Type: text/plain
   Content-Transfer-Encoding: quoted-printable

   Evan Cooch <evan.cooch at gmail.com> writes:
   > Greetings --
   >
   > Consider the following matrix:
   >
   > a : matrix([-0.7-0.3*h1,0.6-0.6*h1],[0.5-0.5*h2,-0.35-0.65*h2]);
   >
   > I'm trying to solve for h1 and h2, such that dominant eigenvalue of a is =
   0.
   >
   > I know how to do this in a couple of other CAS systems, but am stumped
   > with Maxima. I know the solution in thiscase is
   >
   > h2=3D(11-81*h1)/(151-21*h1)
   >
   > Any pointers would be much appreciated (to aid and abet my attempt to
   > port a bunch of teaching material to Maxima).
   >
   > Thanks!


This is somewhat more involved than your solution suggests. You can
also do everything using just the core Maxima, without to_poly_solve.

(%i1) display2d:false$
(%i2) a : rat(matrix([-0.7-0.3*h1,0.6-0.6*h1],[0.5-0.5*h2,-0.35-0.65*h2]))$
(%i3) p:charpoly(a,t);
(%o3) (200*t^2+(130*h2+60*h1+210)*t+(-21*h1+151)*h2+81*h1-11)/200
(%i4) r:solve(subst(t=0,p),h2);
(%o4) [h2 = (81*h1-11)/(21*h1-151)]

This gives a relationship between h2 & h1 when det(a)=0, i.e. a has 0 as an eigenvalue.
If 0 is the dominant eigenvalue, then you must look at when the 2nd ev is negative:

(%i5) z:rat(subst(r,p));

(%o5) ((210*h1-1510)*t^2+(63*h1^2+294*h1-1657)*t)/(210*h1-1510)
(%i6) e:solve(z,t);

(%o6) [t = -(63*h1^2+294*h1-1657)/(210*h1-1510),t = 0]

You see the non-zero eigenvalue is a rational function of h1; you need
to see when it is negative.

(%i7) fourier_elim([rhs(first(e)) < 0],[h1]);

(%o7) [151/21 < h1,63*h1^2+294*h1-1657 > 0]
  or [h1 < 151/21,-(63*h1^2+294*h1-1657) > 0]

By my calculation, this is a union of two open intervals,
(151/21,infty)
(r1,r2)
where r1 < 0 < r2 are the roots of the quadratic.

Leo


   An almost complete answer:

   Firstly, let's not use the icky decimals any longer than necessary:

   (%i1) a : rat(matrix([-0.7-0.3*h1,0.6-0.6*h1],[0.5-0.5*h2,-0.35-0.65*h2]));
   <snip: warnings from rat>
			     [   3 h1 + 7    3 h1 - 3  ]
			     [ - --------  - --------  ]
			     [      10          5      ]
   (%o1)/R/                  [                         ]
			     [    h2 - 1     13 h2 + 7 ]
			     [  - ------   - --------- ]
			     [      2           20     ]

   Right, now use eivals to grab the eigenvalues:

   (%i2) load("eigen")$

   (%i3) evals: first(eivals(a));
			2                            2
   (%o3) [- (sqrt(169 h2  + (324 h1 - 662) h2 + 36 h1  - 396 h1 + 529) + 13 h2
    + 6 h1 + 21)/40,=20
	      2                            2
   sqrt(169 h2  + (324 h1 - 662) h2 + 36 h1  - 396 h1 + 529) - 13 h2 - 6 h1 - =
   21
   =2D------------------------------------------------------------------------=
   ----]
					40


   The solve() function doesn't seem to have much luck, but to_poly_solve
   does much better:

   (%i4) load("to_poly_solve")$
   *** output flushed ***
   (%i5) to_poly_solve(first(evals)=3D0, h2);
					  2
		       %pi          126 h1  + 588 h1 - 3314
   (%o5) %union(%if((- --- < parg(- -----------------------))
			2                 21 h1 - 151
			2
		  126 h1  + 588 h1 - 3314     %pi         81 h1 - 11
     %and (parg(- -----------------------) <=3D ---), [h2 =3D -----------], %u=
   nion()))
			21 h1 - 151            2          21 h1 - 151
   (%i6) to_poly_solve(second(evals)=3D0, h2);
					2
		       %pi        126 h1  + 588 h1 - 3314
   (%o6) %union(%if((- --- < parg(-----------------------))
			2               21 h1 - 151
			2
		  126 h1  + 588 h1 - 3314     %pi         81 h1 - 11
       %and (parg(-----------------------) <=3D ---), [h2 =3D -----------], %u=
   nion()))
			21 h1 - 151            2          21 h1 - 151

   Frustratingly, I can't see how to tell Maxima that h1 and h2 are real,
   so all the parg values are zero. Also, the %union with only one element
   is a bit rubbish. Anyway, I can do one more thing:

   (%i7) eq: first(second(first(%o6)));
				       81 h1 - 11
   (%o7)                          h2 =3D -----------
				       21 h1 - 151

   Then:

   (%i21) radcan(second(evals)), eq;
   (%o21)                                 0


   Looking at the picture given by

     plot2d(first(evals), [h1, -10, 5]), eq;

   it looks like something more complicated is going on with the other
   eigenvalue. Maybe you know a bit more about the situation - I'd be
   interested to know what the graph is saying.


   Rupert

   --=-=-=
   Content-Type: application/pgp-signature

   -----BEGIN PGP SIGNATURE-----
   Version: GnuPG v1.4.12 (GNU/Linux)

   iJwEAQECAAYFAlDkghgACgkQRtd/pJbYVoanwAP/Tf356BZKOeJH8XIroEjtkdIu
   2W6V0g/Rf2LAKaCN5IEditQQ133/W94Ljt7KtW41cWS/EcJcFX5O+SU/nosLvEDI
   KQAqYIX55MMmbb4O9pZ9WZNOyQMDwpMP9wlyrg2vtY2I6I3lnRHLptl3cV0ZT1JI
   pp7jt4CKYEeLfnVOLg8=
   =0Mm4
   -----END PGP SIGNATURE-----
   --=-=-=--

   --===============0252527135626607063==
   Content-Type: text/plain; charset="us-ascii"
   MIME-Version: 1.0
   Content-Transfer-Encoding: 7bit
   Content-Disposition: inline

   _______________________________________________
   Maxima mailing list
   Maxima at math.utexas.edu
   http://www.math.utexas.edu/mailman/listinfo/maxima

   --===============0252527135626607063==--