finte fields in maxima



   >From mailnull  Sat Jan  5 01:22:24 2013
   Received-SPF: pass (sog-mx-4.v43.ch3.sourceforge.com: domain of gmail.com designates 209.85.220.52 as permitted sender) client-ip=209.85.220.52; envelope-from=lijr07 at gmail.com; helo=mail-pa0-f52.google.com;
   Date: Sat, 5 Jan 2013 09:21:04 +0800
   From: Jianrong Li <lijr07 at gmail.com>
   Content-Type: multipart/alternative; boundary="047d7b2e118de3c6dc04d2806877"

   --047d7b2e118de3c6dc04d2806877
   Content-Type: text/plain; charset="ISO-8859-1"

   Dear Leo,

   Thank you very much for your help. The field F which contains a copy of the
   field of order 2^n for each n \geq 1 is the algebraic closure of the
   2-element field F_2. Let a be a matrix over F_2.  Is there some function
   which can determine a is diagonalizable over F or not?

   For example, let
   a=
   [[0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0],
   [1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0],
   [1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
   [1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
   [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
   [1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0],
   [0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0],
   [1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0],
   [0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
   [0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0],
   [1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0],
   [0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0],
   [1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0],
   [1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0],
   [1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0],
   [0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]];

   Does "a is diagonalizable over F" mean "the 0, 1, in a are considered as
   elements in F and there are invertible matrix P over F such that PaP^{-1}
   is diagonal? Do we have 1+1=0 in F?

   Thank you very much.
   With best wishes,
   Jianrong.

Please ensure your reply goes to the Maxima mailing list (cc'd on this message). Leo