Are you looking for something like:
(%i4) hjmax(A,sigma,p);
(%o4) sqrt(((sqrt(tau11^2*tau22^2+2*tau11*tau22*(tau22+tau12+tau11))-tau11*tau22)/(tau11*tau22)+1)/((1-(sqrt(tau11^2*tau22^2+2*tau11*tau22*(tau22+tau12+tau11))-tau11*tau22)/(tau22+tau12+tau11)^2)^2+(sqrt(tau11^2*tau22^2+2*tau11*tau22*(tau22+tau12+tau11))-tau11*tau22)/(tau11*tau22)))
(%i5) tlimit(%,tau11,inf);
(%o5) 1
You might like to read the user documentation for "%". It is
-- System variable: %
`%' is the output expression (e.g., `%o1', `%o2', `%o3', ...) most
recently computed by Maxima, whether or not it was displayed. ..
Using % is sometimes a convenient way to compose function calls in small steps.
Also limit(%,tau11,inf) asks a clueless question-sometimes tlimit is the better choice.
--Barton
________________________________________
From: maxima-bounces at math.utexas.edu [maxima-bounces at math.utexas.edu] on behalf of Hugo Coolens [coolens at kahosl.be]
Sent: Tuesday, February 19, 2013 08:15
To: maxima at math.utexas.edu
Subject: [newbie] cascaded limits
I want to calculate a "cascade of limits" of a function
f(tau11,tau12,tau22)
Something like this:
lim tau11-->inf, tau22-->inf, tau12-->0 (f(tau11,tau12,tau22))
I tried to do this by calculating one limit after another, but
unfortunately that doesn't work as the "previous variable" pops
up again inexpectedly in the end of the calculation.
Here is what I did
p:tau11*tau22;
sigma:tau11+tau12+tau22;
A:sqrt(p^2+2*p*sigma)-p;
hjmax(A,sigma,p):=sqrt((1+A/p)/((1-A/sigma^2)^2+A/p));
ev(hjmax(A,sigma,p));
limit(hjmax(A,sigma,p),tau12,0);
limit(hjmax(A,sigma,p),tau11,inf); tau11+tau12+tau22 is positive
limit(hjmax(A,sigma,p),tau22,inf); tau11+tau12+tau22 is positive
but now I have an expression in which tau11 reappears...
thanks in advance
hugo
_______________________________________________
Maxima mailing list
Maxima at math.utexas.edu
http://www.math.utexas.edu/mailman/listinfo/maxima