Subject: Solving 3rd order equation by solve (more on...)
From: Pepe Sanchez
Date: Wed, 6 Mar 2013 11:55:16 +0100
Hi!
Another case where some way for "chopping" of virtually zero imaginary parts would be of great help.
This comes form a practical case where a 3x3 symmetric matrix diagonalization ( integer matrix elements) was required
(Version details: wxmaxima 12.04 on OSX
wxWidgets: 2.8.12
Unicode Support: yes
Maxima version: 5.27.0
Lisp: SBCL 1.0.55.0-abb03f9)
ratprint: false$
fpprintprec: 4$
L1: [2,-1,1]$ L2: [-1,2,0]$ L3: [1,0,3]$
HV: matrix(L1,L2,L3)$
load(eigen)$
eivects(HV)$
rectform(%), numer;
One gets:
(%o9)
[[[2.445,5.551*10^-17*%i+0.753,3.802-5.551*10^-17*%i],[1,1,1]],[[[1,5.551*10^-16*%i-2.247,-1.802]],[[1,5.551*
10^-17*%i+.8019,-3.384*10^-16*%i-0.445]],[[1,-4.163*10^-16*%i-0.555,2.538*10^-16*%i+1.247]]]]
All eigenvalues and eigenvectors real as expected, but a lot of xxx*10^-16 * %i stuff .....
******************Incidentally
*******************Two procedures that fail in getting the answer:
1) by using
rectform(eivects(HV)), numer;
I get:
"algsys failure: the eigenvector(s) for the"1"th eigenvalue will be missing."
"algsys failure: the eigenvector(s) for the"2"th eigenvalue will be missing."
"algsys failure: the eigenvector(s) for the"3"th eigenvalue will be missing."
(%o13) [[[2.445,5.551*10^-17*%i+0.753,3.802-5.551*10^-17*%i],[1,1,1]],[[],[],[]]]
2) Trying to get the normalizad vectors: by using
ueivects(HV);
I get:
<< Expression too long to display! >>
Best
________________________________________________________________
Jose Sanchez-Marin.
Universitat de Valencia.
Institut de Ciencia Molecular (ICMol).
Cat. Jose Beltran Martinez, 2 Phone: +34 96 354 4444
E-46980 Paterna FAX: +34 96 354 3576
Spain e-mail: Jose.Sanchez at uv.es
_________________________________________________________________