Taylor series displays only few terms



Using deftaylor with an infinite sum produces fewer display terms than with 
a finite sum (polynomial).  While this may be a feature, I suspect I'm 
missing what option controls this behavior.  To illustrate, running Xmaxima 
from a Maxima-5.28.0-2 distribution (same behavior observed in wxMaxima):

(%i1) deftaylor(F(x), sum(x^(k+3)*bern(k)/(k!*(k+3)), k, 0, inf));
(%o1)                              [F]
(%i2) taylor(F(x),x,0,15);
                            3    4    5
                           x    x    x
(%o2)/T/                   -- - -- + -- + . . .
                           3    8    60
(%i3) deftaylor(F(x), sum(x^(k+3)*bern(k)/(k!*(k+3)), k, 0, 30));
deftaylor: redefining F.
(%o3)                              [F]
(%i4) taylor(F(x),x,0,15);
          3    4    5     7       9        11          13
         x    x    x     x       x        x           x
(%o4)/T/ -- - -- + -- - ---- + ------ - -------- + ---------
         3    8    60   5040   272160   13305600   622702080
                                                            15
                                                       691 x
                                                  - -------------- + . . .
                                                    19615115520000
(%i5) maxtayorder;
(%o5)                              true
(%i6) zerobern;
(%o6)                              true

Notice that for the infinite sum, taylor displays only three terms, less
than the requested length of expansion, but for the finite sum the full
requested length is provided.

I suspect this may hinge on hitting the first "missing" coefficient
in the infinite sum, i.e. x^6 has zero coefficient from bernoulli
numbers.  The documentation of function pade hints that "truncation
level" and "order of series" are properties of a power series, but
otherwise the documentation does not explain how these are set or
inferred.

regards, chip