The matrix is of the form M=k*N, where k is a scalar. It follows directly
from the definition of eigenvalues that the eigenvalues of M are k times
the eigenvalues of N.
And it is easy to find the eigenvalues of an arbitrary-size numerical
matrix or equivalently the roots of an arbitrary-degree polynomial.
-s
On Sun, Jul 28, 2013 at 4:57 PM, Barton Willis <willisb at unk.edu> wrote:
> To print the matrix in a form that is easier to copy and paste, set
> display2d to false; for example
>
> (%i6) display2d : false$
> (%i7) matrix([1,3],[3,5]);
> (%o7) matrix([1,3],[3,5])
>
> I'd also suggest that you not apply float to the matrix--post it to this
> list without using float.
>
> --Barton
>
> ________________________________________
> From: maxima-bounces at math.utexas.edu [maxima-bounces at math.utexas.edu] on
> behalf of Yury Tarasievich [yury.tarasievich at gmail.com]
> Sent: Sunday, July 28, 2013 14:37
> To: maxima at math.utexas.edu
> Subject: Re: [Maxima] eigenvalues, part: fell off the end
>
> It so happens there already is an active ticket
> for the 'unsolvable eigenvalues 10x10', #2183
> (issued by you, I think).
>
> And I don't know Maxima well enough yet to
> produce an input from matrix I fill in my
> program. The result of print(float(opH)) with
> empty lines removed is:
>
> [ 0.0 0.0 0.0 0.0 0.0
> 0.0 0.0 0.0 0.0
> 0.0 ]
> [ 0.0 - 1055.2 A 18.0 A 18.0 A 18.0 A
> 0.0 0.0 0.0 0.0
> 0.0 ]
> [ 0.0 18.0 A - 929.6 A 18.0 A 18.0 A
> 18.0 A 0.0 0.0 0.0
> 0.0 ]
> [ 0.0 18.0 A 18.0 A - 804.0 A 18.0 A
> 18.0 A 18.0 A 0.0 0.0
> 0.0 ]
> [ 0.0 18.0 A 18.0 A 18.0 A - 678.4
> A 18.0 A 18.0 A 18.0 A 0.0
> 0.0 ]
> [ 0.0 0.0 18.0 A 18.0 A 18.0 A
> - 678.4 A 18.0 A 18.0 A 18.0 A
> 0.0 ]
> [ 0.0 0.0 0.0 18.0 A 18.0 A
> 18.0 A - 678.4 A 18.0 A 18.0 A
> 18.0 A ]
> [ 0.0 0.0 0.0 0.0 18.0 A
> 18.0 A 18.0 A - 804.0 A 18.0 A
> 18.0 A ]
> [ 0.0 0.0 0.0 0.0 0.0
> 18.0 A 18.0 A 18.0 A - 929.6 A
> 18.0 A ]
> [ 0.0 0.0 0.0 0.0 0.0
> 0.0 18.0 A 18.0 A 18.0 A
> - 1055.2 A ]
>
> -Yury
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>
>
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>