On 10/13/13 12:00 PM, Stavros Macrakis wrote:
>
> I'll guess that these are
> http://en.m.wikipedia.org/wiki/Casus_irreducibilis, where an exact
> real solution can only be expressed with complex expressions. For
> approximate (numeric) results, you can use realroots.
>
> -s
>
> On Oct 13, 2013 1:12 PM, "Joerg Rauh" <jrgrauh at yahoo.com
> <mailto:jrgrauh at yahoo.com>> wrote:
>
> ("5.28.0-2","2012-08-27 23:16:48","i686-pc-mingw32","GNU Common
> Lisp (GCL)","GCL 2.6.8")
>
> Dear Maxima Supporter,
> out of wxMaxima 12.04.0 I had Maxima solve for x:
> ((40-3*x)*(20-2*x)*x)/2-500
> Here are the results:
> [x=(-(sqrt(3)*%i)/2-1/2)*((250*sqrt(101)*%i)/3^(7/2)+25750/729)^(1/3)+(1300*((sqrt(3)*%i)/2-1/2))/(81*((250*sqrt(101)*%i)/3^(7/2)+25750/729)^(1/3))+70/9,
> x=((sqrt(3)*%i)/2-1/2)*((250*sqrt(101)*%i)/3^(7/2)+25750/729)^(1/3)+(1300*(-(sqrt(3)*%i)/2-1/2))/(81*((250*sqrt(101)*%i)/3^(7/2)+25750/729)^(1/3))+70/9,
> x=((250*sqrt(101)*%i)/3^(7/2)+25750/729)^(1/3)+1300/(81*((250*sqrt(101)*%i)/3^(7/2)+25750/729)^(1/3))
>
> It missed the real results: x=1.7407 and x=6.23415, which I found
> here:
> http://www.wolframalpha.com/input/?i=solve%28%28%2840-3*x%29%2F2%29*%2820-2*x%29*x-500%2Cx%29
>
> Is there anything I can do differently to make it find the real
> solutions?
> Thank you and kind regards
>
try
rectform(%);
bfloat(%);
> Joerg
>
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu <mailto:Maxima at math.utexas.edu>
> http://www.math.utexas.edu/mailman/listinfo/maxima
>
>
>
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima