number theory / decimal expansion



Hi,

Below is my naive attemp to check the type of decimal expansion for 
positive ratios < 1.0
It works for all tests which I have done.
Is it good ?
How can I improve it ?

TIA

Adam

/* =============== batch file code with comments, theory and tests ===*/

/*

Maxima CAS batch file




*/

remvalue(all);
kill(all);


/*
input = ratio, which automaticaly changed to lowest terms by Maxima CAS
output = string describing a type of decimal expansion

---------------------------------------------------------------------------------
" The rules that determine whether a fraction has recurring decimals or 
not are really quite simple.

1. First represent the fraction in its simplest form, by dividing both 
numerator and denominator by common factors.

2. Now, look at the denominator.

3.
3.1 If the prime factorization of the denominator contains only the 
factors 2 and 5, then the decimal fraction of that fraction will not 
have recurring digits. In other words : Terminating decimals represent 
rational numbers of the form k/(2^n*5^m)


3.2
  A fraction in lowest terms with a prime denominator other than 2 or 5 
(i.e. coprime to 10) always produces a repeating decimal.

3.2.1
  If the prime factorization yields factors like 3, 7, 11 or other 
primes (other than 2 and 5), then that fraction will have a decimal 
representation that includes recurring digits.

3.2.2
   Moreover, if the denominator's prime factors include 2 and/or 5 in 
addition to other prime factors like 3, 7, etc., the decimal 
representation of the fraction will start with a few non-recurring 
decimals before the recurring part."

http://blogannath.blogspot.com/2010/04/vedic-mathematics-lesson-49-recurring.html


check :
http://www.knowledgedoor.com/2/calculators/convert_a_ratio_of_integers.html

--------------- preperiodic 
----------------------------------------------------
1/12= 1/(3*2^2) 0.08(3) preperiod=2 period=1
1/6=1/(2*3) = 0.1()6) preperiod=1 preriod=2 ;
77/600 = 77/(2^3*3*5^2) = 0.128(3) preperiod=3 period = 1


-------------------------- periodic 
-----------------------------------------------------
1/3 = 0.(3) preperiod=0 preriod=2 ;
1/7 = 0.142857  ; 6 repeating digits
1/17 = 0.05882352 94117647  ; 16 repeating digits
1/19 = 0.052631578 947368421  ; 18 repeating digits
1/23 = 0.04347826086 95652173913  ; 22 repeating digits
1/29 = 0.0344827 5862068 9655172 4137931  ; 28 repeating digits
1/97 = 0.01030927 83505154 63917525 77319587 62886597 93814432 98969072 
16494845 36082474 22680412 37113402 06185567  ; 96 repeating digits

------------------------------------finite 
--------------------------------------------------------------
1/2 = 0.2 finite preperiod =0 period = 0 ; terminating decimal


---------------------------------------------------------------------------------------

*/


GiveRatioType(ratio):=
block
(
   [numerator:denom(ratio),
    FactorsList ,
    Factor,
    Has25:false,
    HasAlsoOtherPrimes:false,
    type ], /* type of decimal expansion of the ratio of integers */

   /* compute list of prime factors ofd denominator */
   FactorsList:ifactors(numerator),
   FactorsList:map(first,FactorsList),
   print(numerator, FactorsList),
   /* check factors type :
          only 2 or 5
          also other primes then 2 or 5
  */
   if (member(2,FactorsList) or member(5,FactorsList)) then Has25:true,


   for Factor in FactorsList do
    if (not member(Factor,[2,5])) then
          HasAlsoOtherPrimes:true,
   print(Has25, HasAlsoOtherPrimes),

   /* find type of decimal expansion */
   if (not Has25 and HasAlsoOtherPrimes)     then type:"periodic",
   if (Has25 and HasAlsoOtherPrimes)     then type:"preperiodic",
   if (Has25 and not HasAlsoOtherPrimes) then type:"finite",


   return(type)
)$

compile(all)$

/* input numbers*/
a:1 $
b:3 $

r:a/b$

type :  GiveRatioType(r);

ifactors(b);