On 10/25/2013 05:39 AM, Michele Minelli wrote:
> Hello everyone,
> is there a way to compute the k-th power of a matrix in a symbolic way?
> For example if the matrix is [2, 0, 0], [0, 2, 0], [-1, 0, 3] it
> should return [2^k, 0, 0], [0, 2^k, 0], [2^k-3^k, 0, 3^k].
> Thank you.
> Michele
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>
In wxMaxima, I wrote:
M:matrix([[2, 0, 0],[0, 2, 0],[1, 0, 3]]);
(%o1) [[2,0,0],[0,2,0],[?1,0,3]]
M2:M^k;
(%o2) [[2^k,0,0],[0,2^k,0],[(?1)^k,0,3^k]]
So it seems to be straight forward to apply arbitrary exponents.
wxbuild_info()$
wxMaxima version: 13.4.0 (compiled from source)
Maxima version: branch_5_31_base_79_gf5e6d07
Maxima build date: 2013-10-18 17:39:30
Host type: x86_64-unknown-linux-gnu
Lisp implementation type: SBCL
Lisp implementation version: 1.1.12
Respectfully,
Paul Bowyer