"matrix([matrix([" returned with mat_function (Was: Re: Symbolic matrix power)
Subject: "matrix([matrix([" returned with mat_function (Was: Re: Symbolic matrix power)
From: Michele Minelli
Date: Sun, 27 Oct 2013 10:58:37 +0100
Actually there are more than two occurrences: scrolling through the
expression I counted three of them. Probably the matrix is defined by
use of submatrices, but mine is just a guess.
Regards,
Michele M.
Il 27/10/2013 10:43, andre maute ha scritto:
> This is a repost, so it won't get lost.
>
> On 10/25/2013 08:26 PM, andre maute wrote:
>> On 10/25/2013 07:50 PM, Aleksas Domarkas wrote:
>>> (%i1) A:matrix([2, 0, 0], [0, 2, 0], [-1, 0, 3])$
>>> (%i2) load("diag")$
>>> (%i3) integer_pow(x) := block ([k], declare (k, integer), x^k)$
>>> (%i4) mat_function (integer_pow, A);
>>> (%o4) matrix([2^k,0,0],[0,2^k,0],[2^k-3^k,0,3^k])
>> Hi list,
>> I tried the following
>>
>> [user at host ~]$ rmaxima
>> Maxima 5.30.0 http://maxima.sourceforge.net
>> using Lisp SBCL 1.1.2-1.fc18
>> Distributed under the GNU Public License. See the file COPYING.
>> Dedicated to the memory of William Schelter.
>> The function bug_report() provides bug reporting information.
>> STYLE-WARNING: redefining MAXIMA::$FILE_TYPE in DEFUN
>> (%i1) display2d : false;
>>
>> (%o1) false
>> (%i2) A : matrix([a,b],[c,d]);
>>
>> (%o2) matrix([a,b],[c,d])
>> (%i3) load("diag");
>>
>> (%o3) "/home/user/opt/maxima/share/maxima/5.30.0/share/contrib/diag.mac"
>> (%i4) integer_pow(x) := block ([k], declare (k, integer), x^k);
>>
>> (%o4) integer_pow(x):=block([k],declare(k,integer),x^k)
>> (%i5) mat_function (integer_pow, A);
>>
>> (%o5) matrix([matrix([(sqrt(d^2-2*a*d+4*b*c+a^2)-d-a)^k* ...
>>
>> Where %o5 consists of a long long expression
>> But can you see it the two occurrences of "matrix"?
>>
>> Andre
>>
>> _______________________________________________
>> Maxima mailing list
>> Maxima at math.utexas.edu
>> http://www.math.utexas.edu/mailman/listinfo/maxima
>>
>
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima