Nächste: Funktionen und Variablen für Zahlen, Vorige: Zahlen, Nach oben: Zahlen [Inhalt][Index]
Arithmetische Rechnungen mit ganzen oder rationalen Zahlen sind exakt. Prinzipiell können die ganzen und rationalen Zahlen eine beliebige Anzahl an Stellen haben. Eine Obergrenze ist allein der zur Verfügung stehende Speicherplatz.
(%i1) 1/3+5/4+3; 55 (%o1) -- 12 (%i2) 100!; (%o2) 9332621544394415268169923885626670049071596826438162146859\ 2963895217599993229915608941463976156518286253697920827223758251\ 185210916864000000000000000000000000 (%i3) 100!/101!; 1 (%o3) --- 101
Funktionen für ganze und rationale Zahlen:
integerp numberp nonnegintegerp oddp evenp ratnump rationalize
Maxima rechnet mit Gleitkommazahlen in doppelter Genauigkeit. Weiterhin kann Maxima mit großen Gleitkommazahlen rechnen, die prinzipiell eine beliebige Genauigkeit haben.
Gleitkommazahlen werden mit einem Dezimalpunkt eingegeben. Der Exponent kann mit "f", "e" oder "d" angegeben werden. Intern rechnet Maxima ausschließlich mit Gleitkommazahlen in doppelter Genauigkeit, die immer mit "e" für den Exponenten angezeigt werden. Große Gleitkommazahlen werden mit dem Exponenten "b" bezeichnet. Groß- und Kleinschreibung werden bei der Schreibweise des Exponenten nicht unterschieden.
(%i1) [2.0,1f10,1,e10,1d10,1d300]; (%o1) [2.0, 1.e+10, 1, e10, 1.e+10, 1.e+300] (%i2) [2.0b0,1b10,1b300]; (%o2) [2.0b0, 1.0b10, 1.0b300]
Ist mindestens eine Zahl in einer Rechnung eine Gleitkommazahl, werden die Argumente in Gleitkommazahlen umgewandelt und eine Gleitkommazahl als Ergebnis zurückgegeben. Dies wird auch für große Gleitkommazahlen ausgeführt.
(%i1) 2.0+1/2+3; (%o1) 5.5 (%i2) 2.0b0+1/2+3; (%o2) 5.5b0
Mit den Funktionen float
und bfloat
werden Zahlen in
Gleitkommazahlen und große Gleitkommazahlen umgewandelt:
(%i1) float([2,1/2,1/3,2.0b0]); (%o1) [2.0, 0.5, .3333333333333333, 2.0] (%i2) bfloat([2,1/2,1/3,2.0b0]); (%o2) [2.0b0, 5.0b-1, 3.333333333333333b-1, 2.0b0]
Funktionen und Variablen für Gleitkommazahlen:
float floatnump bfloat bfloatp fpprec float2bf bftorat ratepsilon number_pbranch m1pbranch
Maxima kennt keinen eigenen Typ für komplexe Zahlen. Komplexe Zahlen werden
von Maxima intern als die Addition von Realteil und dem mit der Imaginären
Einheit %i
multiplizierten Imaginärteil dargestellt. Zum Beispiel sind
die komplexen Zahlen 2 + 3*%i
und 2 - 3*%i
die Wurzeln der
Gleichung x^2 - 4*x + 13 = 0
.
Maxima vereinfacht Produkte, Quotienten, Wurzeln und andere Ausdrücke mit
komplexen Zahlen nicht automatisch zu einer komplexen Zahl. Um Produkte mit
komplexen Zahlen zu vereinfachen, kann der Ausdruck mit der Funktion
expand
expandiert werden.
Funktionen für komplexe Zahlen:
realpart imagpart rectform polarform cabs carg conjugate csign
Nächste: Funktionen und Variablen für Zahlen, Vorige: Zahlen, Nach oben: Zahlen [Inhalt][Index]