Vorige: Introduction to orthogonal polynomials, Nach oben: orthopoly [Inhalt][Index]
The associated Legendre function of the first kind of degree n and order m.
Reference: Abramowitz and Stegun, equations 22.5.37, page 779, 8.6.6 (second equation), page 334, and 8.2.5, page 333.
The associated Legendre function of the second kind of degree n and order m.
Reference: Abramowitz and Stegun, equation 8.5.3 and 8.1.8.
The Chebyshev function of the first kind.
Reference: Abramowitz and Stegun, equation 22.5.47, page 779.
The Chebyshev function of the second kind.
Reference: Abramowitz and Stegun, equation 22.5.48, page 779.
The generalized Laguerre polynomial of degree n.
Reference: Abramowitz and Stegun, equation 22.5.54, page 780.
The Hermite polynomial.
Reference: Abramowitz and Stegun, equation 22.5.55, page 780.
Return true
if the input is an interval and return false if it isn’t.
The Jacobi polynomial.
The Jacobi polynomials are actually defined for all a and b;
however, the Jacobi polynomial weight
(1 - x)^a (1 + x)^b
isn’t integrable for
a <= -1
or b <= -1
.
Reference: Abramowitz and Stegun, equation 22.5.42, page 779.
The Laguerre polynomial.
Reference: Abramowitz and Stegun, equations 22.5.16 and 22.5.54, page 780.
The Legendre polynomial of the first kind.
Reference: Abramowitz and Stegun, equations 22.5.50 and 22.5.51, page 779.
The Legendre polynomial of the first kind.
Reference: Abramowitz and Stegun, equations 8.5.3 and 8.1.8.
Returns a recursion relation for the orthogonal function family f with arguments args. The recursion is with respect to the polynomial degree.
(%i1) orthopoly_recur (legendre_p, [n, x]);
(2 n - 1) P (x) x + (1 - n) P (x) n - 1 n - 2 (%o1) P (x) = ----------------------------------------- n n
The second argument to orthopoly_recur
must be a list with the
correct number of arguments for the function f; if it isn’t,
Maxima signals an error.
(%i1) orthopoly_recur (jacobi_p, [n, x]); Function jacobi_p needs 4 arguments, instead it received 2 -- an error. Quitting. To debug this try debugmode(true);
Additionally, when f isn’t the name of one of the families of orthogonal polynomials, an error is signalled.
(%i1) orthopoly_recur (foo, [n, x]); A recursion relation for foo isn't known to Maxima -- an error. Quitting. To debug this try debugmode(true);
Default value: true
When orthopoly_returns_intervals
is true
, floating point results
are returned in the form interval (c, r)
, where c is
the center of an interval and r is its radius. The center can be a
complex number; in that case, the interval is a disk in the complex plane.
Returns a three element list; the first element is the formula of the weight for the orthogonal polynomial family f with arguments given by the list args; the second and third elements give the lower and upper endpoints of the interval of orthogonality. For example,
(%i1) w : orthopoly_weight (hermite, [n, x]); 2 - x (%o1) [%e , - inf, inf] (%i2) integrate(w[1]*hermite(3, x)*hermite(2, x), x, w[2], w[3]); (%o2) 0
The main variable of f must be a symbol; if it isn’t, Maxima signals an error.
The Pochhammer symbol. For nonnegative integers n with
n <= pochhammer_max_index
, the expression
pochhammer (x, n)
evaluates to the product
x (x + 1) (x + 2) ... (x + n - 1)
when
n > 0
and to 1 when n = 0
. For negative n,
pochhammer (x, n)
is defined as
(-1)^n / pochhammer (1 - x, -n)
. Thus
(%i1) pochhammer (x, 3); (%o1) x (x + 1) (x + 2) (%i2) pochhammer (x, -3); 1 (%o2) - ----------------------- (1 - x) (2 - x) (3 - x)
To convert a Pochhammer symbol into a quotient of gamma functions,
(see Abramowitz and Stegun, equation 6.1.22) use makegamma
, for
example
(%i1) makegamma (pochhammer (x, n)); gamma(x + n) (%o1) ------------ gamma(x)
When n exceeds pochhammer_max_index
or when n is symbolic,
pochhammer
returns a noun form.
(%i1) pochhammer (x, n); (%o1) (x) n
Default value: 100
pochhammer (n, x)
expands to a product if and only if
n <= pochhammer_max_index
.
Examples:
(%i1) pochhammer (x, 3), pochhammer_max_index : 3; (%o1) x (x + 1) (x + 2) (%i2) pochhammer (x, 4), pochhammer_max_index : 3; (%o2) (x) 4
Reference: Abramowitz and Stegun, equation 6.1.16, page 256.
The spherical Bessel function of the first kind.
Reference: Abramowitz and Stegun, equations 10.1.8, page 437 and 10.1.15, page 439.
The spherical Bessel function of the second kind.
Reference: Abramowitz and Stegun, equations 10.1.9, page 437 and 10.1.15, page 439.
The spherical Hankel function of the first kind.
Reference: Abramowitz and Stegun, equation 10.1.36, page 439.
The spherical Hankel function of the second kind.
Reference: Abramowitz and Stegun, equation 10.1.17, page 439.
The spherical harmonic function.
Reference: Merzbacher 9.64.
The left-continuous unit step function; thus unit_step (x)
vanishes
for x <= 0
and equals 1 for x > 0
.
If you want a unit step function that takes on the value 1/2 at zero, use
(1 + signum (x))/2
.
The ultraspherical polynomial (also known as the Gegenbauer polynomial).
Reference: Abramowitz and Stegun, equation 22.5.46, page 779.
Vorige: Introduction to orthogonal polynomials, Nach oben: orthopoly [Inhalt][Index]