Nächste: , Vorige: , Nach oben: Analysis   [Inhalt][Index]

16.1 Funktionen und Variablen für Grenzwerte

Optionsvariable: lhospitallim

Standardwert: 4

Die Optionsvariable lhospitallim enthält die maximale Zahl an Iterationen, für die die L’Hospitalsche Regel von der Funktion limit angewendet wird. Damit wird verhindert, dass die Funktion limit in eine unendliche Schleife gerät.

Funktion: limit (expr, x, val, dir)
Funktion: limit (expr, x, val)
Funktion: limit (expr)

Berechnet den Grenzwert des Ausdrucks expr, wenn die reelle Variable x gegen den Wert val in Richtung dir geht. Die Richtung dir kann die Werte plus für einen Grenzwert von oben und minus für einen Grenzwert von unten haben. Für einen zweiseitigen Grenzwert wird die Richtung dir nicht angegeben.

Maxima verwendet die folgenden Symbole für unendliche und infinitesimale Größen sowie undefinierte und unbestimmte Größen, die als Ergebnis eines Grenzwertes oder als Wert für die Bestimmung eines Grenzwertes auftreten können:

inf

positiv unendlich

minf

negativ unendlich

infinity

komplex unendlich

zeroa

positiv unendlich klein

zerob

negativ unendlich klein

und

ein nicht definiertes Ergebnis

ind

ein unbestimmtes Ergebnis

Die Optionsvariable lhospitallim enthält die maximale Zahl an Iterationen, für die die L’Hospitalsche Regel von der Funktion limit angewendet wird.

Hat tlimswitch den Wert true, nutzt die Funktion limit eine Taylor-Reihenentwicklung, wenn der Grenzwert nicht mit anderen Methoden bestimmt werden kann.

Hat die Optionsvariable limsubst den Wert false, wird die Ersetzung von limit(f(g(x)),x,x0) durch f(limit(g(x),x,x0)) für eine unbekannte Funktion f verhindert. Siehe auch limsubst.

limit kann mit einem Argument aufgerufen werden, um Ausdrücke zu vereinfachen, die unendliche oder infinitesimale Größen enthalten. Zum Beispiel wird limit(inf-1) zu inf vereinfacht.

Der Algorithmus ist in der folgenden Arbeit beschrieben: Wang, P., "Evaluation of Definite Integrals by Symbolic Manipulation", Ph.D. thesis, MAC TR-92, October 1971.

Beispiele:

(%i1) limit(x*log(x),x,0,plus)
(%o1)                           0
(%i2) limit((x+1)^(1/x),x,0)
(%o2)                          %e
(%i3) limit(%e^x/x,x,inf)
(%o3)                          inf
(%i4) limit(sin(1/x),x,0)
(%o4)                          ind
Optionsvariable: limsubst

Standardwert: false

Ist eine Funktion f teil eines Ausdrucks für den Maxima den Grenzwert sucht, dann wird folgende Ersetzung ausgeführt:

   limit   f(g(x)) = f(limit   g(x))
   x -> x0             x -> x0

Hat die Optionsvariable limsubst den Wert false, führt limit die oben gezeigte Ersetzung nicht für unbekannte Funktionen f aus. Dies vermeidet Fehler wie zum Beispiel ein Ergebnis von 1 für den Grenzwert limit (f(n)/f(n+1), n, inf). Hat limsubst den Wert true, führt Maxima die oben gezeigte Ersetzung auch für unbekannte Funktionen f aus.

Beispiele:

Die Funktion f ist nicht definiert. Maxima gibt im ersten Fall eine Substantivform zurück. Im zweiten Fall nimmt Maxima den Grenzwert für die unbekannte Funktion als f(10) an.

(%i1) limit(f(x),x,10),limsubst:false;
(%o1)                     limit   f(x)
                          x -> 10
(%i2) limit(f(x),x,10),limsubst:true;
(%o2)                         f(10)
Funktion: tlimit (expr, x, val, dir)
Funktion: tlimit (expr, x, val)
Funktion: tlimit (expr)

Bestimmt den Grenzwert mit Hilfe der Taylor-Reihenwicklung des Ausdrucks expr, wenn die Variable x gegen den Wert val aus der Richtung dir geht. Diese Methode wird von limit angewendet, wenn die Optionsvariable tlimswitch den Wert true ist. Das ist der Standardwert.

Optionsvariable: tlimswitch

Standardwert: true

Hat tlimswitch den Wert true, nutzt die Funktion limit eine Taylor-Reihenentwicklung, wenn der Grenzwert nicht mit anderen Methoden bestimmt werden kann.


Nächste: , Vorige: , Nach oben: Analysis   [Inhalt][Index]