Next: Struve Functions, Previous: Exponential Integrals, Up: Special Functions [Contents][Index]
The Error function and related functions are defined in Abramowitz and Stegun, Handbook of Mathematical Functions, A&S Chapter 7 and (DLMF 7)
The Error Function erf(z):
(A&S eqn 7.1.1) and (DLMF 7.2.E1).
See also flag erfflag
. This can also be expressed in terms
of a hypergeometric function. See hypergeometric_representation.
The Complementary Error Function erfc(z):
(A&S eqn 7.1.2) and (DLMF 7.2.E2).
This can also be expressed in terms of a hypergeometric function. See hypergeometric_representation.
The Imaginary Error Function.
Generalized Error function Erf(z1,z2):
This can also be expressed in terms of a hypergeometric function. See hypergeometric_representation.
The Fresnel Integral
(A&S eqn 7.3.1) and (DLMF 7.2.E7).
The simplification
\(C(-x) = -C(x)\)
is applied when
flag trigsign
is true.
The simplification
\(C(ix) = iC(x)\)
is applied when
flag %iargs
is true.
See flags erf_representation
and hypergeometric_representation
.
The Fresnel Integral
(A&S eqn 7.3.2) and (DLMF 7.2.E8).
The simplification
\(S(-x) = -S(x)\)
is applied when
flag trigsign
is true.
The simplification
\(S(ix) = iS(x)\)
is applied when
flag %iargs
is true.
See flags erf_representation
and hypergeometric_representation
.
Default value: false
erf_representation
controls how the error functions are
represented. It must be set to one of false
, erf
,
erfc
, or erfi
. When set to false
, the error functions are not
modified. When set to erf
, all error functions (erfc
,
erfi
, erf_generalized
, fresnel_s
and
fresnel_c
) are converted to erf
functions. Similary,
erfc
converts error functions to erfc
. Finally
erfi
converts the functions to erfi
.
Converting to erf
:
(%i1) erf_representation:erf; (%o1) true (%i2) erfc(z); (%o2) erfc(z) (%i3) erfi(z); (%o3) erfi(z) (%i4) erf_generalized(z1,z2); (%o4) erf(z2) - erf(z1) (%i5) fresnel_c(z); sqrt(%pi) (%i + 1) z sqrt(%pi) (1 - %i) z (1 - %i) (erf(--------------------) + %i erf(--------------------)) 2 2 (%o5) ------------------------------------------------------------------- 4 (%i6) fresnel_s(z); sqrt(%pi) (%i + 1) z sqrt(%pi) (1 - %i) z (%i + 1) (erf(--------------------) - %i erf(--------------------)) 2 2 (%o6) ------------------------------------------------------------------- 4
Converting to erfc
:
(%i1) erf_representation:erfc; (%o1) erfc (%i2) erf(z); (%o2) 1 - erfc(z) (%i3) erfc(z); (%o3) erfc(z) (%i4) erf_generalized(z1,z2); (%o4) erfc(z1) - erfc(z2) (%i5) fresnel_s(c); sqrt(%pi) (%i + 1) c (%o5) ((%i + 1) ((- erfc(--------------------)) 2 sqrt(%pi) (1 - %i) c - %i (1 - erfc(--------------------)) + 1))/4 2 (%i6) fresnel_c(c); sqrt(%pi) (%i + 1) c (%o6) ((1 - %i) ((- erfc(--------------------)) 2 sqrt(%pi) (1 - %i) c + %i (1 - erfc(--------------------)) + 1))/4 2
Converting to erfc
:
(%i1) erf_representation:erfi; (%o1) erfi (%i2) erf(z); (%o2) - %i erfi(%i z) (%i3) erfc(z); (%o3) %i erfi(%i z) + 1 (%i4) erfi(z); (%o4) erfi(z) (%i5) erf_generalized(z1,z2); (%o5) %i erfi(%i z1) - %i erfi(%i z2) (%i6) fresnel_s(z); sqrt(%pi) %i (%i + 1) z (%o6) ((%i + 1) ((- %i erfi(-----------------------)) 2 sqrt(%pi) (1 - %i) %i z - erfi(-----------------------)))/4 2 (%i7) fresnel_c(z); (%o7) sqrt(%pi) (1 - %i) %i z sqrt(%pi) %i (%i + 1) z (1 - %i) (erfi(-----------------------) - %i erfi(-----------------------)) 2 2 --------------------------------------------------------------------------- 4
Default value: false
Enables transformation to a Hypergeometric
representation for fresnel_s
and fresnel_c
and other
error functions.
(%i1) hypergeometric_representation:true; (%o1) true (%i2) fresnel_s(z); 2 4 3 3 7 %pi z 3 %pi hypergeometric([-], [-, -], - -------) z 4 2 4 16 (%o2) --------------------------------------------- 6 (%i3) fresnel_c(z); 2 4 1 1 5 %pi z (%o3) hypergeometric([-], [-, -], - -------) z 4 2 4 16 (%i4) erf(z); 1 3 2 2 hypergeometric([-], [-], - z ) z 2 2 (%o4) ---------------------------------- sqrt(%pi) (%i5) erfi(z); 1 3 2 2 hypergeometric([-], [-], z ) z 2 2 (%o5) -------------------------------- sqrt(%pi) (%i6) erfc(z); 1 3 2 2 hypergeometric([-], [-], - z ) z 2 2 (%o6) 1 - ---------------------------------- sqrt(%pi) (%i7) erf_generalized(z1,z2); 1 3 2 2 hypergeometric([-], [-], - z2 ) z2 2 2 (%o7) ------------------------------------ sqrt(%pi) 1 3 2 2 hypergeometric([-], [-], - z1 ) z1 2 2 - ------------------------------------ sqrt(%pi)
Next: Struve Functions, Previous: Exponential Integrals, Up: Special Functions [Contents][Index]