Simple algebra - possible?



> Let's say I want to solve this:
> 
> a = 10
> 2(SqrRt(a) * Pi) / 2 + 4 = _answer_
> 
> Is this possible in Maxima? =) I'm sure it is, but how?

(C1) a:10;
(D1) 		 10
(C2) 2*(sqrt(a)*%pi)/2+4;
(D2) 	  SQRT(10) %PI + 4

Notice that Maxima normally gives results in symbolic form.

You can now evaluate that result as an ordinary floating-point number
(14 digits):

(C3) float(%);
(D3) 	  13.9345882657961

or as a high-precision floating-point number (in this case 50 digits):

(C6) bfloat(d5),fpprec:50;
(D6) 1.3934588265796101234433550670320351124771143722743B1

You can even express your approximations as continued fractions:

(C7) cfdisrep(cf(d3));

                                   1
(D7)                13 + ----------------------
                                     1
                         1 + ------------------
                                        1
                             14 + -------------
                                          1
                                  3 + ---------
                                            1
                                      2 + -----
                                              1
                                          9 + -
                                              2

Things get more interesting when your equations don't give the answer
directly:

(C8) 1+1/x=x;
                              1
(D8)                          - + 1 = x
                              x
(C9) solve(d8,x);
                       SQRT(5) - 1      SQRT(5) + 1
(D9)            [x = - -----------, x = -----------]
                            2                2
(C10) float(d9);
(D10) 	   [x = - 0.61803398874989, x = 1.618033988749895]

Have fun!

       -s