Thanks, this way it works.
now I have another problem: how do I delete these tellsimp'ed rules, and
only them? tellsimp returns not only the last rule introduced, but a
list of rules...
--
Andrei Zorine
maxima@vttoth.com wrote:
> I don't know how you can avoid using DEPENDS, but I do know how you can use
> TELLSIMP in a function to do what you apparently want to do:
>
> (C1) foo(x):=(depends(x,t),apply('tellsimp,['diff(x,t),dx_dt]));
> dx
> (D1) foo(x) := (DEPENDS(x, t), APPLY('TELLSIMP, [--, dx_dt]))
> dt
> (C2) foo(x1);
> (D2) [DERIVATIVERULE1, SIMPDERIV]
> (C3) diff(x1,t);
> (D3) dx_dt
>
>
> Viktor
>
>
>
>
> -----Original Message-----
> From: maxima-admin@math.utexas.edu [mailto:maxima-admin at math] On
> Behalf Of Andrei Zorine
> Sent: Thursday, May 06, 2004 1:48 PM
> To: maxima
> Subject: tellsimp inside functuons
>
> Hello,
> I want to write a function, which amongst all does what is done below.
> (C1) depends(x,t);
>
> (D1) [x(t)]
> (C2) tellsimp('diff(x,t),dx/dt);
>
> (D2) [DERIVATIVERULE1, SIMPDERIV]
> (C3) diff(x,t,2);
>
> (D3) 0
> (C4) diff(x,t);
>
> dx
> (D4) --
> dt
> (C5) :lisp $d4
>
> ((MTIMES SIMP) ((MEXPT SIMP) $dt -1) $dx)
>
> So, the function should look like
> f(x):=( ... do this and that, then tellsimp to substitute diff(x,t) with
> dx/dt, then do more and more...)
> My intention is to be able to do f(x1), f(x2), etc., and the have
> diff(x1,t,2)=0 , diff(x1,t)=dx1/dt, etc.
>
> the problem is either f(x1) results in tellsimp('diff(x,t),...).
>
> If I write a macro like buldq([x],'tellsimp('diff(x,t),dx/dt)), then
> tellsimp gets not evaluated :(
>
> How do I define patterns with differentiation of a function's argument?
>
> I have to say depends(x,t) to emulate mma's Dt call. Can I define
> simplification of 'diff(x,t) without saying depends(...) in the above
> framework?
>
> --
> Andrei Zorine
>
> _______________________________________________
> Maxima mailing list
> Maxima@www.math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>
> _______________________________________________
> Maxima mailing list
> Maxima@www.math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>
>