Bug in today's CVS



Taylor expansions are contagious.  When maxima multiplies exp(-x^2/4) 
times a
Taylor polynomial, the product gets expanded as a Taylor polynomial. To
do the calculation, use 'ratsimp' to convert from a Taylor polynomial to 
a non-taylor.

Also, I think you want 'minf and 'inf instead of %minf and %inf.

(%i3) kill(all)$
(%i1) f(x):=x-2*log((exp(x)+1)/2) + x**2/4$
(%i2) exp(-x**2/4)*ratsimp(taylor(exp(f(x))*(x*kb+mu)**gamma,x,0,4))$
(%i3) display2d : false$
(%i4) integrate(%o2,x,'minf,'inf)/4;
Is  gamma+4  positive, negative, or zero?

pos;Is  mu  positive or negative?
pos;Is  gamma  an integer?
no;Is  gamma+3  positive, negative, or zero?
pos;Is  kb*gamma  positive, negative, or zero?
pos;Is  gamma+2  positive, negative, or zero?
pos;Is  kb^2*gamma  positive, negative, or zero?
pos;Is  gamma+1  positive, negative, or zero?
pos;Is  gamma  positive, negative, or zero?
pos;Is  kb  zero or nonzero?
nonzero;Is  kb  positive or negative?

pos;(%o4) (24*sqrt(%pi)
         *(8*kb^4*mu^gamma*gamma^4-48*kb^4*mu^gamma*gamma^3
                                  +88*kb^4*mu^gamma*gamma^2
                                  -48*kb^4*mu^gamma*gamma+2*mu^(gamma+4))
 +4*sqrt(%pi)*(96*kb^2*mu^(gamma+2)*gamma^2-96*kb^2*mu^(gamma+2)*gamma)
       +384*sqrt(%pi)*mu^(gamma+4))
       /(768*mu^4)


Barton




David Ronis 
Sent by: maxima-admin@math.utexas.edu
02/01/2005 11:52 AM
Please respond to david.ronis

 
        To:     maxima@math.utexas.edu
        cc: 
        Subject:        [Maxima] Bug in today's CVS



I'm trying to use maxima to do a saddle point integration with the 
following:

f(x):=x-2*log((exp(x)+1)/2) + x**2/4;
exp(-x**2/4)*taylor(exp(f(x))*(x*kb+mu)**gamma,x,0,4);
integrate(%,x,%minf,%inf)/4;


As far as I can tell, the taylor expansion is done correctly, however,
the multiplication by the additional exponential in the second line
seems to be ignored.  The resulting integral doesn't converge and I'm
left with explicit %inf/%minf's at the integration (which is wrong in
any event).

David

_______________________________________________
Maxima mailing list
Maxima@www.math.utexas.edu
http://www.math.utexas.edu/mailman/listinfo/maxima