My knowledge of Mathematica syntax isn't great, but I think this is
correct.
Pete Gustafson
---
In[37]:= Integrate[x^(2*I+3)/Exp[I*x^3/2],{x,0,Infinity}]
3 + 2 I
x
Integrate::idiv: Integral of -------- does not converge on {0,
Infinity}.
3
I/2 x
E
3 + 2 I
x
Out[37]= Integrate[--------, {x, 0, Infinity}]
3
I/2 x
E
---
In[38]:= Integrate[x/(sinh[x]-I),{x,-Infinity,Infinity}]
x
Out[38]= Integrate[------------, {x, -Infinity, Infinity}]
-I + sinh[x]
---
In[39]:= Integrate[x^3*Exp[I*x^3/2],{x,0,Infinity}]
3
I/2 x 3
Integrate::idiv: Integral of E x does not converge on {0,
Infinity}.
3
I/2 x 3
Out[39]= Integrate[E x , {x, 0, Infinity}]
---
In[40]:= Integrate[x^2*Exp[I*x^3/2],{x,0,Infinity}]
3
I/2 x 2
Integrate::idiv: Integral of E x does not converge on {0,
Infinity}.
3
I/2 x 2
Out[40]= Integrate[E x , {x, 0, Infinity}]
---
In[41]:= Integrate[x^k*log[x]/(x+3),{x,0,Infinity}]
k
x log[x]
Out[41]= Integrate[---------, {x, 0, Infinity}]
3 + x
On Tue, 2006-03-14 at 17:55 -0500, Raymond Toy wrote:
> Could someone with macsyma/mma/maple evaluate the following integrals
> for me? I'm verifying some of the defint routines and I'd like some
> independent verification of these integrals.
>
> integrate(x^(2*%i+3)/exp(%i*x^3/2),x,0,inf);
>
> integrate(x/(sinh(x)-%i),x,minf,inf);
>
> integrate(x^3*exp(%i*x^3/2),x,0,inf);
>
> integrate(x^2*exp(%i*x^3/2),x,0,inf);
>
> integrate(x^k*log(x)/(x+3),x,0,inf);
>
> Thanks,
>
> Ray
>
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima