Maxima: Tex command



Dear All,

I have a complicated 2x1 matrix br which I converted to tex using the maxima
command tex(br) - see below.

The resulting tex command produces a mathematical expression that does not
fit in an A4 page. Is there another command that can produce tex code with
better formatted output  ??

Regards,

C. Frangos.




br = MATRIX([-(((a^3*SIN(delta3)^3*dpsis^3*kon^3
	      -6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Ld)
	      *Lo1
	      +LC*(a^2*kon^2
		      *(-6*ddelta3*SIN(delta3)*dpsis^2*Ld
		       -6*d2psis*COS(delta3)*SIN(delta3)^2*dpsis*Ld)
		  +a^3*COS(delta3)*SIN(delta3)^2*dpsis^3*kon^3))
	      *SIN(PHI)
	      +(6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Lo1^2
	       +LC*(a*kon
		     *(8*ddelta3^2*COS(delta3)*dpsis*Ld
		      -8*d2psis*ddelta3*SIN(delta3)*Ld)
		   +a^2*(2*ddelta3*SIN(delta3)*dpsis^2
			+12*d2psis*COS(delta3)*SIN(delta3)^2*dpsis)*kon^2)*Lo1
	       +LC^2*(a*kon
		       *(-8*ddelta3^2*SIN(delta3)*dpsis*Ld
			-8*d2psis*ddelta3*COS(delta3)*Ld)
		     +a^2*(2*ddelta3*COS(delta3)*dpsis^2
			  -6*d2psis*SIN(delta3)^3*dpsis
			  +6*d2psis*SIN(delta3)*dpsis)*kon^2)
	       +a^3*SIN(delta3)^3*dpsis^3*kon^3*Ld)
	       *COS(PHI))
	      /(8*SIN(delta3)^3*Lo1^3+24*COS(delta3)*SIN(delta3)^2*LC*Lo1^2
				     +(24*SIN(delta3)-24*SIN(delta3)^3)
				      *LC^2*Lo1
				     +(8*COS(delta3)
				      -8*COS(delta3)*SIN(delta3)^2)
				      *LC^3)],
	    [-((6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Lo1^2
	      +LC*(a*kon
		    *(8*ddelta3^2*COS(delta3)*dpsis*Ld
		     -8*d2psis*ddelta3*SIN(delta3)*Ld)
		  +a^2*(2*ddelta3*SIN(delta3)*dpsis^2
		       +12*d2psis*COS(delta3)*SIN(delta3)^2*dpsis)*kon^2)*Lo1
	      +LC^2*(a*kon
		      *(-8*ddelta3^2*SIN(delta3)*dpsis*Ld
		       -8*d2psis*ddelta3*COS(delta3)*Ld)
		    +a^2*(2*ddelta3*COS(delta3)*dpsis^2
			 -6*d2psis*SIN(delta3)^3*dpsis
			 +6*d2psis*SIN(delta3)*dpsis)*kon^2)
	      +a^3*SIN(delta3)^3*dpsis^3*kon^3*Ld)
	      *SIN(PHI)
	      +((6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Ld
	       -a^3*SIN(delta3)^3*dpsis^3*kon^3)
	       *Lo1
	       +LC*(a^2*kon^2
		       *(6*ddelta3*SIN(delta3)*dpsis^2*Ld
			+6*d2psis*COS(delta3)*SIN(delta3)^2*dpsis*Ld)
		   -a^3*COS(delta3)*SIN(delta3)^2*dpsis^3*kon^3))
	       *COS(PHI))
	      /(8*SIN(delta3)^3*Lo1^3+24*COS(delta3)*SIN(delta3)^2*LC*Lo1^2
				     +(24*SIN(delta3)-24*SIN(delta3)^3)
				      *LC^2*Lo1
				     +(8*COS(delta3)
				      -8*COS(delta3)*SIN(delta3)^2)
				      *LC^3)])







$$\pmatrix{-{{\left(\left(a^3\,\sin ^3delta_3\,dpsis^3\,kon^3-6\,a^2
 \,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Ld\right)\,Lo_1+LC\,\left(a^
 2\,kon^2\,\left(-6\,ddelta_3\,\sin delta_3\,dpsis^2\,Ld-6\,d2psis\,
 \cos delta_3\,\sin ^2delta_3\,dpsis\,Ld\right)+a^3\,\cos delta_3\,
 \sin ^2delta_3\,dpsis^3\,kon^3\right)\right)\,\sin \varphi+\left(6\,
 a^2\,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Lo_1^2+LC\,\left(a\,kon\,
 \left(8\,ddelta_3^2\,\cos delta_3\,dpsis\,Ld-8\,d2psis\,ddelta_3\,
 \sin delta_3\,Ld\right)+a^2\,\left(2\,ddelta_3\,\sin delta_3\,dpsis^
 2+12\,d2psis\,\cos delta_3\,\sin ^2delta_3\,dpsis\right)\,kon^2
 \right)\,Lo_1+LC^2\,\left(a\,kon\,\left(-8\,ddelta_3^2\,\sin delta_3
 \,dpsis\,Ld-8\,d2psis\,ddelta_3\,\cos delta_3\,Ld\right)+a^2\,\left(
 2\,ddelta_3\,\cos delta_3\,dpsis^2-6\,d2psis\,\sin ^3delta_3\,dpsis+
 6\,d2psis\,\sin delta_3\,dpsis\right)\,kon^2\right)+a^3\,\sin ^3
 delta_3\,dpsis^3\,kon^3\,Ld\right)\,\cos \varphi}\over{8\,\sin ^3
 delta_3\,Lo_1^3+24\,\cos delta_3\,\sin ^2delta_3\,LC\,Lo_1^2+\left(
 24\,\sin delta_3-24\,\sin ^3delta_3\right)\,LC^2\,Lo_1+\left(8\,
 \cos delta_3-8\,\cos delta_3\,\sin ^2delta_3\right)\,LC^3}}\cr -{{
 \left(6\,a^2\,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Lo_1^2+LC\,
 \left(a\,kon\,\left(8\,ddelta_3^2\,\cos delta_3\,dpsis\,Ld-8\,d2psis
 \,ddelta_3\,\sin delta_3\,Ld\right)+a^2\,\left(2\,ddelta_3\,\sin
 delta_3\,dpsis^2+12\,d2psis\,\cos delta_3\,\sin ^2delta_3\,dpsis
 \right)\,kon^2\right)\,Lo_1+LC^2\,\left(a\,kon\,\left(-8\,ddelta_3^2
 \,\sin delta_3\,dpsis\,Ld-8\,d2psis\,ddelta_3\,\cos delta_3\,Ld
 \right)+a^2\,\left(2\,ddelta_3\,\cos delta_3\,dpsis^2-6\,d2psis\,
 \sin ^3delta_3\,dpsis+6\,d2psis\,\sin delta_3\,dpsis\right)\,kon^2
 \right)+a^3\,\sin ^3delta_3\,dpsis^3\,kon^3\,Ld\right)\,\sin \varphi
 +\left(\left(6\,a^2\,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Ld-a^3\,
 \sin ^3delta_3\,dpsis^3\,kon^3\right)\,Lo_1+LC\,\left(a^2\,kon^2\,
 \left(6\,ddelta_3\,\sin delta_3\,dpsis^2\,Ld+6\,d2psis\,\cos delta_3
 \,\sin ^2delta_3\,dpsis\,Ld\right)-a^3\,\cos delta_3\,\sin ^2delta_3
 \,dpsis^3\,kon^3\right)\right)\,\cos \varphi}\over{8\,\sin ^3delta_3
 \,Lo_1^3+24\,\cos delta_3\,\sin ^2delta_3\,LC\,Lo_1^2+\left(24\,
 \sin delta_3-24\,\sin ^3delta_3\right)\,LC^2\,Lo_1+\left(8\,\cos
 delta_3-8\,\cos delta_3\,\sin ^2delta_3\right)\,LC^3}}\cr }$$