Maxima: Tex command
- Subject: Maxima: Tex command
- From: C. Frangos
- Date: Mon, 18 Jun 2007 18:16:20 +0200
Dear All,
I have a complicated 2x1 matrix br which I converted to tex using the maxima
command tex(br) - see below.
The resulting tex command produces a mathematical expression that does not
fit in an A4 page. Is there another command that can produce tex code with
better formatted output ??
Regards,
C. Frangos.
br = MATRIX([-(((a^3*SIN(delta3)^3*dpsis^3*kon^3
-6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Ld)
*Lo1
+LC*(a^2*kon^2
*(-6*ddelta3*SIN(delta3)*dpsis^2*Ld
-6*d2psis*COS(delta3)*SIN(delta3)^2*dpsis*Ld)
+a^3*COS(delta3)*SIN(delta3)^2*dpsis^3*kon^3))
*SIN(PHI)
+(6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Lo1^2
+LC*(a*kon
*(8*ddelta3^2*COS(delta3)*dpsis*Ld
-8*d2psis*ddelta3*SIN(delta3)*Ld)
+a^2*(2*ddelta3*SIN(delta3)*dpsis^2
+12*d2psis*COS(delta3)*SIN(delta3)^2*dpsis)*kon^2)*Lo1
+LC^2*(a*kon
*(-8*ddelta3^2*SIN(delta3)*dpsis*Ld
-8*d2psis*ddelta3*COS(delta3)*Ld)
+a^2*(2*ddelta3*COS(delta3)*dpsis^2
-6*d2psis*SIN(delta3)^3*dpsis
+6*d2psis*SIN(delta3)*dpsis)*kon^2)
+a^3*SIN(delta3)^3*dpsis^3*kon^3*Ld)
*COS(PHI))
/(8*SIN(delta3)^3*Lo1^3+24*COS(delta3)*SIN(delta3)^2*LC*Lo1^2
+(24*SIN(delta3)-24*SIN(delta3)^3)
*LC^2*Lo1
+(8*COS(delta3)
-8*COS(delta3)*SIN(delta3)^2)
*LC^3)],
[-((6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Lo1^2
+LC*(a*kon
*(8*ddelta3^2*COS(delta3)*dpsis*Ld
-8*d2psis*ddelta3*SIN(delta3)*Ld)
+a^2*(2*ddelta3*SIN(delta3)*dpsis^2
+12*d2psis*COS(delta3)*SIN(delta3)^2*dpsis)*kon^2)*Lo1
+LC^2*(a*kon
*(-8*ddelta3^2*SIN(delta3)*dpsis*Ld
-8*d2psis*ddelta3*COS(delta3)*Ld)
+a^2*(2*ddelta3*COS(delta3)*dpsis^2
-6*d2psis*SIN(delta3)^3*dpsis
+6*d2psis*SIN(delta3)*dpsis)*kon^2)
+a^3*SIN(delta3)^3*dpsis^3*kon^3*Ld)
*SIN(PHI)
+((6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Ld
-a^3*SIN(delta3)^3*dpsis^3*kon^3)
*Lo1
+LC*(a^2*kon^2
*(6*ddelta3*SIN(delta3)*dpsis^2*Ld
+6*d2psis*COS(delta3)*SIN(delta3)^2*dpsis*Ld)
-a^3*COS(delta3)*SIN(delta3)^2*dpsis^3*kon^3))
*COS(PHI))
/(8*SIN(delta3)^3*Lo1^3+24*COS(delta3)*SIN(delta3)^2*LC*Lo1^2
+(24*SIN(delta3)-24*SIN(delta3)^3)
*LC^2*Lo1
+(8*COS(delta3)
-8*COS(delta3)*SIN(delta3)^2)
*LC^3)])
$$\pmatrix{-{{\left(\left(a^3\,\sin ^3delta_3\,dpsis^3\,kon^3-6\,a^2
\,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Ld\right)\,Lo_1+LC\,\left(a^
2\,kon^2\,\left(-6\,ddelta_3\,\sin delta_3\,dpsis^2\,Ld-6\,d2psis\,
\cos delta_3\,\sin ^2delta_3\,dpsis\,Ld\right)+a^3\,\cos delta_3\,
\sin ^2delta_3\,dpsis^3\,kon^3\right)\right)\,\sin \varphi+\left(6\,
a^2\,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Lo_1^2+LC\,\left(a\,kon\,
\left(8\,ddelta_3^2\,\cos delta_3\,dpsis\,Ld-8\,d2psis\,ddelta_3\,
\sin delta_3\,Ld\right)+a^2\,\left(2\,ddelta_3\,\sin delta_3\,dpsis^
2+12\,d2psis\,\cos delta_3\,\sin ^2delta_3\,dpsis\right)\,kon^2
\right)\,Lo_1+LC^2\,\left(a\,kon\,\left(-8\,ddelta_3^2\,\sin delta_3
\,dpsis\,Ld-8\,d2psis\,ddelta_3\,\cos delta_3\,Ld\right)+a^2\,\left(
2\,ddelta_3\,\cos delta_3\,dpsis^2-6\,d2psis\,\sin ^3delta_3\,dpsis+
6\,d2psis\,\sin delta_3\,dpsis\right)\,kon^2\right)+a^3\,\sin ^3
delta_3\,dpsis^3\,kon^3\,Ld\right)\,\cos \varphi}\over{8\,\sin ^3
delta_3\,Lo_1^3+24\,\cos delta_3\,\sin ^2delta_3\,LC\,Lo_1^2+\left(
24\,\sin delta_3-24\,\sin ^3delta_3\right)\,LC^2\,Lo_1+\left(8\,
\cos delta_3-8\,\cos delta_3\,\sin ^2delta_3\right)\,LC^3}}\cr -{{
\left(6\,a^2\,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Lo_1^2+LC\,
\left(a\,kon\,\left(8\,ddelta_3^2\,\cos delta_3\,dpsis\,Ld-8\,d2psis
\,ddelta_3\,\sin delta_3\,Ld\right)+a^2\,\left(2\,ddelta_3\,\sin
delta_3\,dpsis^2+12\,d2psis\,\cos delta_3\,\sin ^2delta_3\,dpsis
\right)\,kon^2\right)\,Lo_1+LC^2\,\left(a\,kon\,\left(-8\,ddelta_3^2
\,\sin delta_3\,dpsis\,Ld-8\,d2psis\,ddelta_3\,\cos delta_3\,Ld
\right)+a^2\,\left(2\,ddelta_3\,\cos delta_3\,dpsis^2-6\,d2psis\,
\sin ^3delta_3\,dpsis+6\,d2psis\,\sin delta_3\,dpsis\right)\,kon^2
\right)+a^3\,\sin ^3delta_3\,dpsis^3\,kon^3\,Ld\right)\,\sin \varphi
+\left(\left(6\,a^2\,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Ld-a^3\,
\sin ^3delta_3\,dpsis^3\,kon^3\right)\,Lo_1+LC\,\left(a^2\,kon^2\,
\left(6\,ddelta_3\,\sin delta_3\,dpsis^2\,Ld+6\,d2psis\,\cos delta_3
\,\sin ^2delta_3\,dpsis\,Ld\right)-a^3\,\cos delta_3\,\sin ^2delta_3
\,dpsis^3\,kon^3\right)\right)\,\cos \varphi}\over{8\,\sin ^3delta_3
\,Lo_1^3+24\,\cos delta_3\,\sin ^2delta_3\,LC\,Lo_1^2+\left(24\,
\sin delta_3-24\,\sin ^3delta_3\right)\,LC^2\,Lo_1+\left(8\,\cos
delta_3-8\,\cos delta_3\,\sin ^2delta_3\right)\,LC^3}}\cr }$$