Maxima: Tex command



You could try to use \delta instead of delta, or other single-character
names.
You could try various simplification or abbreviation tools. Like letting s_3
be sin(delta3) and
substituting in there.

You could try factoring or using ratsimp or trigsimp, also.

 

> -----Original Message-----
> From: maxima-bounces at math.utexas.edu 
> [mailto:maxima-bounces at math.utexas.edu] On Behalf Of C. Frangos
> Sent: Monday, June 18, 2007 9:16 AM
> To: maxima at math.utexas.edu
> Subject: Maxima: Tex command
> 
> 
> Dear All,
> 
> I have a complicated 2x1 matrix br which I converted to tex 
> using the maxima
> command tex(br) - see below.
> 
> The resulting tex command produces a mathematical expression 
> that does not
> fit in an A4 page. Is there another command that can produce 
> tex code with
> better formatted output  ??
> 
> Regards,
> 
> C. Frangos.
> 
> 
> 
> 
> br = MATRIX([-(((a^3*SIN(delta3)^3*dpsis^3*kon^3
> 	      -6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Ld)
> 	      *Lo1
> 	      +LC*(a^2*kon^2
> 		      *(-6*ddelta3*SIN(delta3)*dpsis^2*Ld
> 		       -6*d2psis*COS(delta3)*SIN(delta3)^2*dpsis*Ld)
> 		  +a^3*COS(delta3)*SIN(delta3)^2*dpsis^3*kon^3))
> 	      *SIN(PHI)
> 	      +(6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Lo1^2
> 	       +LC*(a*kon
> 		     *(8*ddelta3^2*COS(delta3)*dpsis*Ld
> 		      -8*d2psis*ddelta3*SIN(delta3)*Ld)
> 		   +a^2*(2*ddelta3*SIN(delta3)*dpsis^2
> 			
> +12*d2psis*COS(delta3)*SIN(delta3)^2*dpsis)*kon^2)*Lo1
> 	       +LC^2*(a*kon
> 		       *(-8*ddelta3^2*SIN(delta3)*dpsis*Ld
> 			-8*d2psis*ddelta3*COS(delta3)*Ld)
> 		     +a^2*(2*ddelta3*COS(delta3)*dpsis^2
> 			  -6*d2psis*SIN(delta3)^3*dpsis
> 			  +6*d2psis*SIN(delta3)*dpsis)*kon^2)
> 	       +a^3*SIN(delta3)^3*dpsis^3*kon^3*Ld)
> 	       *COS(PHI))
> 	      
> /(8*SIN(delta3)^3*Lo1^3+24*COS(delta3)*SIN(delta3)^2*LC*Lo1^2
> 				     +(24*SIN(delta3)-24*SIN(delta3)^3)
> 				      *LC^2*Lo1
> 				     +(8*COS(delta3)
> 				      -8*COS(delta3)*SIN(delta3)^2)
> 				      *LC^3)],
> 	    [-((6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Lo1^2
> 	      +LC*(a*kon
> 		    *(8*ddelta3^2*COS(delta3)*dpsis*Ld
> 		     -8*d2psis*ddelta3*SIN(delta3)*Ld)
> 		  +a^2*(2*ddelta3*SIN(delta3)*dpsis^2
> 		       
> +12*d2psis*COS(delta3)*SIN(delta3)^2*dpsis)*kon^2)*Lo1
> 	      +LC^2*(a*kon
> 		      *(-8*ddelta3^2*SIN(delta3)*dpsis*Ld
> 		       -8*d2psis*ddelta3*COS(delta3)*Ld)
> 		    +a^2*(2*ddelta3*COS(delta3)*dpsis^2
> 			 -6*d2psis*SIN(delta3)^3*dpsis
> 			 +6*d2psis*SIN(delta3)*dpsis)*kon^2)
> 	      +a^3*SIN(delta3)^3*dpsis^3*kon^3*Ld)
> 	      *SIN(PHI)
> 	      +((6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Ld
> 	       -a^3*SIN(delta3)^3*dpsis^3*kon^3)
> 	       *Lo1
> 	       +LC*(a^2*kon^2
> 		       *(6*ddelta3*SIN(delta3)*dpsis^2*Ld
> 			+6*d2psis*COS(delta3)*SIN(delta3)^2*dpsis*Ld)
> 		   -a^3*COS(delta3)*SIN(delta3)^2*dpsis^3*kon^3))
> 	       *COS(PHI))
> 	      
> /(8*SIN(delta3)^3*Lo1^3+24*COS(delta3)*SIN(delta3)^2*LC*Lo1^2
> 				     +(24*SIN(delta3)-24*SIN(delta3)^3)
> 				      *LC^2*Lo1
> 				     +(8*COS(delta3)
> 				      -8*COS(delta3)*SIN(delta3)^2)
> 				      *LC^3)])
> 
> 
> 
> 
> 
> 
> 
> $$\pmatrix{-{{\left(\left(a^3\,\sin ^3delta_3\,dpsis^3\,kon^3-6\,a^2
>  \,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Ld\right)\,Lo_1+LC\,\left(a^
>  2\,kon^2\,\left(-6\,ddelta_3\,\sin delta_3\,dpsis^2\,Ld-6\,d2psis\,
>  \cos delta_3\,\sin ^2delta_3\,dpsis\,Ld\right)+a^3\,\cos delta_3\,
>  \sin ^2delta_3\,dpsis^3\,kon^3\right)\right)\,\sin \varphi+\left(6\,
>  a^2\,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Lo_1^2+LC\,\left(a\,kon\,
>  \left(8\,ddelta_3^2\,\cos delta_3\,dpsis\,Ld-8\,d2psis\,ddelta_3\,
>  \sin delta_3\,Ld\right)+a^2\,\left(2\,ddelta_3\,\sin delta_3\,dpsis^
>  2+12\,d2psis\,\cos delta_3\,\sin ^2delta_3\,dpsis\right)\,kon^2
>  \right)\,Lo_1+LC^2\,\left(a\,kon\,\left(-8\,ddelta_3^2\,\sin delta_3
>  \,dpsis\,Ld-8\,d2psis\,ddelta_3\,\cos delta_3\,Ld\right)+a^2\,\left(
>  2\,ddelta_3\,\cos delta_3\,dpsis^2-6\,d2psis\,\sin ^3delta_3\,dpsis+
>  6\,d2psis\,\sin delta_3\,dpsis\right)\,kon^2\right)+a^3\,\sin ^3
>  delta_3\,dpsis^3\,kon^3\,Ld\right)\,\cos \varphi}\over{8\,\sin ^3
>  delta_3\,Lo_1^3+24\,\cos delta_3\,\sin ^2delta_3\,LC\,Lo_1^2+\left(
>  24\,\sin delta_3-24\,\sin ^3delta_3\right)\,LC^2\,Lo_1+\left(8\,
>  \cos delta_3-8\,\cos delta_3\,\sin ^2delta_3\right)\,LC^3}}\cr -{{
>  \left(6\,a^2\,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Lo_1^2+LC\,
>  \left(a\,kon\,\left(8\,ddelta_3^2\,\cos delta_3\,dpsis\,Ld-8\,d2psis
>  \,ddelta_3\,\sin delta_3\,Ld\right)+a^2\,\left(2\,ddelta_3\,\sin
>  delta_3\,dpsis^2+12\,d2psis\,\cos delta_3\,\sin ^2delta_3\,dpsis
>  \right)\,kon^2\right)\,Lo_1+LC^2\,\left(a\,kon\,\left(-8\,ddelta_3^2
>  \,\sin delta_3\,dpsis\,Ld-8\,d2psis\,ddelta_3\,\cos delta_3\,Ld
>  \right)+a^2\,\left(2\,ddelta_3\,\cos delta_3\,dpsis^2-6\,d2psis\,
>  \sin ^3delta_3\,dpsis+6\,d2psis\,\sin delta_3\,dpsis\right)\,kon^2
>  \right)+a^3\,\sin ^3delta_3\,dpsis^3\,kon^3\,Ld\right)\,\sin \varphi
>  +\left(\left(6\,a^2\,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Ld-a^3\,
>  \sin ^3delta_3\,dpsis^3\,kon^3\right)\,Lo_1+LC\,\left(a^2\,kon^2\,
>  \left(6\,ddelta_3\,\sin delta_3\,dpsis^2\,Ld+6\,d2psis\,\cos delta_3
>  \,\sin ^2delta_3\,dpsis\,Ld\right)-a^3\,\cos delta_3\,\sin ^2delta_3
>  \,dpsis^3\,kon^3\right)\right)\,\cos \varphi}\over{8\,\sin ^3delta_3
>  \,Lo_1^3+24\,\cos delta_3\,\sin ^2delta_3\,LC\,Lo_1^2+\left(24\,
>  \sin delta_3-24\,\sin ^3delta_3\right)\,LC^2\,Lo_1+\left(8\,\cos
>  delta_3-8\,\cos delta_3\,\sin ^2delta_3\right)\,LC^3}}\cr }$$
>