Maxima: Tex command
- Subject: Maxima: Tex command
- From: Richard Fateman
- Date: Mon, 18 Jun 2007 10:34:36 -0700
You could try to use \delta instead of delta, or other single-character
names.
You could try various simplification or abbreviation tools. Like letting s_3
be sin(delta3) and
substituting in there.
You could try factoring or using ratsimp or trigsimp, also.
> -----Original Message-----
> From: maxima-bounces at math.utexas.edu
> [mailto:maxima-bounces at math.utexas.edu] On Behalf Of C. Frangos
> Sent: Monday, June 18, 2007 9:16 AM
> To: maxima at math.utexas.edu
> Subject: Maxima: Tex command
>
>
> Dear All,
>
> I have a complicated 2x1 matrix br which I converted to tex
> using the maxima
> command tex(br) - see below.
>
> The resulting tex command produces a mathematical expression
> that does not
> fit in an A4 page. Is there another command that can produce
> tex code with
> better formatted output ??
>
> Regards,
>
> C. Frangos.
>
>
>
>
> br = MATRIX([-(((a^3*SIN(delta3)^3*dpsis^3*kon^3
> -6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Ld)
> *Lo1
> +LC*(a^2*kon^2
> *(-6*ddelta3*SIN(delta3)*dpsis^2*Ld
> -6*d2psis*COS(delta3)*SIN(delta3)^2*dpsis*Ld)
> +a^3*COS(delta3)*SIN(delta3)^2*dpsis^3*kon^3))
> *SIN(PHI)
> +(6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Lo1^2
> +LC*(a*kon
> *(8*ddelta3^2*COS(delta3)*dpsis*Ld
> -8*d2psis*ddelta3*SIN(delta3)*Ld)
> +a^2*(2*ddelta3*SIN(delta3)*dpsis^2
>
> +12*d2psis*COS(delta3)*SIN(delta3)^2*dpsis)*kon^2)*Lo1
> +LC^2*(a*kon
> *(-8*ddelta3^2*SIN(delta3)*dpsis*Ld
> -8*d2psis*ddelta3*COS(delta3)*Ld)
> +a^2*(2*ddelta3*COS(delta3)*dpsis^2
> -6*d2psis*SIN(delta3)^3*dpsis
> +6*d2psis*SIN(delta3)*dpsis)*kon^2)
> +a^3*SIN(delta3)^3*dpsis^3*kon^3*Ld)
> *COS(PHI))
>
> /(8*SIN(delta3)^3*Lo1^3+24*COS(delta3)*SIN(delta3)^2*LC*Lo1^2
> +(24*SIN(delta3)-24*SIN(delta3)^3)
> *LC^2*Lo1
> +(8*COS(delta3)
> -8*COS(delta3)*SIN(delta3)^2)
> *LC^3)],
> [-((6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Lo1^2
> +LC*(a*kon
> *(8*ddelta3^2*COS(delta3)*dpsis*Ld
> -8*d2psis*ddelta3*SIN(delta3)*Ld)
> +a^2*(2*ddelta3*SIN(delta3)*dpsis^2
>
> +12*d2psis*COS(delta3)*SIN(delta3)^2*dpsis)*kon^2)*Lo1
> +LC^2*(a*kon
> *(-8*ddelta3^2*SIN(delta3)*dpsis*Ld
> -8*d2psis*ddelta3*COS(delta3)*Ld)
> +a^2*(2*ddelta3*COS(delta3)*dpsis^2
> -6*d2psis*SIN(delta3)^3*dpsis
> +6*d2psis*SIN(delta3)*dpsis)*kon^2)
> +a^3*SIN(delta3)^3*dpsis^3*kon^3*Ld)
> *SIN(PHI)
> +((6*a^2*d2psis*SIN(delta3)^3*dpsis*kon^2*Ld
> -a^3*SIN(delta3)^3*dpsis^3*kon^3)
> *Lo1
> +LC*(a^2*kon^2
> *(6*ddelta3*SIN(delta3)*dpsis^2*Ld
> +6*d2psis*COS(delta3)*SIN(delta3)^2*dpsis*Ld)
> -a^3*COS(delta3)*SIN(delta3)^2*dpsis^3*kon^3))
> *COS(PHI))
>
> /(8*SIN(delta3)^3*Lo1^3+24*COS(delta3)*SIN(delta3)^2*LC*Lo1^2
> +(24*SIN(delta3)-24*SIN(delta3)^3)
> *LC^2*Lo1
> +(8*COS(delta3)
> -8*COS(delta3)*SIN(delta3)^2)
> *LC^3)])
>
>
>
>
>
>
>
> $$\pmatrix{-{{\left(\left(a^3\,\sin ^3delta_3\,dpsis^3\,kon^3-6\,a^2
> \,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Ld\right)\,Lo_1+LC\,\left(a^
> 2\,kon^2\,\left(-6\,ddelta_3\,\sin delta_3\,dpsis^2\,Ld-6\,d2psis\,
> \cos delta_3\,\sin ^2delta_3\,dpsis\,Ld\right)+a^3\,\cos delta_3\,
> \sin ^2delta_3\,dpsis^3\,kon^3\right)\right)\,\sin \varphi+\left(6\,
> a^2\,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Lo_1^2+LC\,\left(a\,kon\,
> \left(8\,ddelta_3^2\,\cos delta_3\,dpsis\,Ld-8\,d2psis\,ddelta_3\,
> \sin delta_3\,Ld\right)+a^2\,\left(2\,ddelta_3\,\sin delta_3\,dpsis^
> 2+12\,d2psis\,\cos delta_3\,\sin ^2delta_3\,dpsis\right)\,kon^2
> \right)\,Lo_1+LC^2\,\left(a\,kon\,\left(-8\,ddelta_3^2\,\sin delta_3
> \,dpsis\,Ld-8\,d2psis\,ddelta_3\,\cos delta_3\,Ld\right)+a^2\,\left(
> 2\,ddelta_3\,\cos delta_3\,dpsis^2-6\,d2psis\,\sin ^3delta_3\,dpsis+
> 6\,d2psis\,\sin delta_3\,dpsis\right)\,kon^2\right)+a^3\,\sin ^3
> delta_3\,dpsis^3\,kon^3\,Ld\right)\,\cos \varphi}\over{8\,\sin ^3
> delta_3\,Lo_1^3+24\,\cos delta_3\,\sin ^2delta_3\,LC\,Lo_1^2+\left(
> 24\,\sin delta_3-24\,\sin ^3delta_3\right)\,LC^2\,Lo_1+\left(8\,
> \cos delta_3-8\,\cos delta_3\,\sin ^2delta_3\right)\,LC^3}}\cr -{{
> \left(6\,a^2\,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Lo_1^2+LC\,
> \left(a\,kon\,\left(8\,ddelta_3^2\,\cos delta_3\,dpsis\,Ld-8\,d2psis
> \,ddelta_3\,\sin delta_3\,Ld\right)+a^2\,\left(2\,ddelta_3\,\sin
> delta_3\,dpsis^2+12\,d2psis\,\cos delta_3\,\sin ^2delta_3\,dpsis
> \right)\,kon^2\right)\,Lo_1+LC^2\,\left(a\,kon\,\left(-8\,ddelta_3^2
> \,\sin delta_3\,dpsis\,Ld-8\,d2psis\,ddelta_3\,\cos delta_3\,Ld
> \right)+a^2\,\left(2\,ddelta_3\,\cos delta_3\,dpsis^2-6\,d2psis\,
> \sin ^3delta_3\,dpsis+6\,d2psis\,\sin delta_3\,dpsis\right)\,kon^2
> \right)+a^3\,\sin ^3delta_3\,dpsis^3\,kon^3\,Ld\right)\,\sin \varphi
> +\left(\left(6\,a^2\,d2psis\,\sin ^3delta_3\,dpsis\,kon^2\,Ld-a^3\,
> \sin ^3delta_3\,dpsis^3\,kon^3\right)\,Lo_1+LC\,\left(a^2\,kon^2\,
> \left(6\,ddelta_3\,\sin delta_3\,dpsis^2\,Ld+6\,d2psis\,\cos delta_3
> \,\sin ^2delta_3\,dpsis\,Ld\right)-a^3\,\cos delta_3\,\sin ^2delta_3
> \,dpsis^3\,kon^3\right)\right)\,\cos \varphi}\over{8\,\sin ^3delta_3
> \,Lo_1^3+24\,\cos delta_3\,\sin ^2delta_3\,LC\,Lo_1^2+\left(24\,
> \sin delta_3-24\,\sin ^3delta_3\right)\,LC^2\,Lo_1+\left(8\,\cos
> delta_3-8\,\cos delta_3\,\sin ^2delta_3\right)\,LC^3}}\cr }$$
>