well, I just didn't try hard enough, because this worked:
(%i2) myg(1);
(%o2) - 4.000000000000001
(%i3) myg(3);
(%o3) 3.999999999999999
(%i4) find_root(myg,1,3);
(%o4) 2.23606797749979
I should have paid closer attention to the html help:
Function: find_root (expr, x, a, b)
Function: find_root (f, a, b)
where f is a function.
ted woollett
==========
I've seen several messages on the mailing list about changes in the
way find_root treats its first argument.
The following is a madeup proxy for a more involved calculation which
involves using quad_qags(...) inside a block(...) definition of a function.
Here myg(x) is supposed to be equivalent to the function x^2 -5, and
I am using find_root to find the positive root of this function, but with
the indirect route using myg(x):
myg(x) := block([val,qlist, numer],
numer:true,
qlist: quad_qags(2*y,y,sqrt(5.0),x),
val : qlist[1],
val
)$
In xmaxima 5.13 (windows xp) I get the following responses:
(%i3) grind(myg);
myg(x):=block([val,qlist,numer],numer:true,qlist:quad_qags(2*y,y,sqrt(5.0),x),val:qlist[1],
val)$
(%o3) done
(%i4) myg(1.0);
(%o4) - 4.000000000000001
(%i5) myg(3.0);
(%o5) 3.999999999999999
(%i6) find_root(myg(y),y,1,3);
function has same sign at endpoints
[f(1.0) = - 5.000000000000002, f(3.0) = - 5.000000000000002]
-- an error. To debug this try debugmode(true);
(%i7) find_root(''myg(y),y,1,3);
function has same sign at endpoints
[f(1.0) = - 5.000000000000002, f(3.0) = - 5.000000000000002]
-- an error. To debug this try debugmode(true);
(%i8) find_root(ev(myg(y)),y,1,3);
function has same sign at endpoints
[f(1.0) = - 5.000000000000002, f(3.0) = - 5.000000000000002]
-- an error. To debug this try debugmode(true);
Any suggestions??
Ted Woollett