Solve tries to find exact solutions. This doesn't have one, so it tries to
simplify the answer to the form x=somefun(x).
but
find_root(r,x,0.3,0.7); appears to work to get an answer. Why not use
find_root if you want only a single approximate root, and you can provide an
interval?
I got 0.5236083984375
> -----Original Message-----
> From: maxima-bounces at math.utexas.edu
> [mailto:maxima-bounces at math.utexas.edu] On Behalf Of Mansur Marvanov
> Sent: Saturday, November 17, 2007 1:59 AM
> To: maxima at math.utexas.edu
> Subject: about solve()
>
> Good time!
>
> I have function f(x). I can't get certain value of f(x)=0
> from solve().
> Why is it solved with sin(x) in answer?
>
> (%i56) f(x):=144 * sin(x) + 12*sqrt(3)*%pi + 36*x^2 + %pi^2
> - 72 - 12*%
> pi*x - 72*sqrt(3)*x$
>
> (%i57) solve(f(x));
> 6 sqrt(5 - 4 sin(x)) - %pi - 6 sqrt(3)
> (%o57) [x = - --------------------------------------,
> 6
> 6 sqrt(5 - 4 sin(x)) + %pi + 6 sqrt(3)
> x = --------------------------------------]
> 6
>
>
> I want to get something like this:
>
> (%i58) find_root(f(x),x,0.3,0.7);
> (%o58) 0.52360846201579
>
> --
> Mansur Marvanov <nanorobocop at gmail.com>
> _______________________________________________
> Maxima mailing list
> Maxima at math.utexas.edu
> http://www.math.utexas.edu/mailman/listinfo/maxima
>